Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 932: 172987, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734084

RESUMO

Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.


Assuntos
Resíduo Eletrônico , Monitoramento Ambiental , Cristais Líquidos , Poluentes do Solo , Paquistão , Resíduo Eletrônico/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Humanos , Exposição Ambiental/estatística & dados numéricos , Medição de Risco
2.
Toxics ; 11(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668783

RESUMO

Novel brominated flame retardants (NBFRs) have been widely used as alternatives to legacy BFRs. However, information on the contamination status and human exposure risks of electronic waste (e-waste)-derived NBFRs in the e-waste workplace is limited. In this study, six NBFRs and the legacy BFRs, hexabromocyclododecanes (HBCDs), were analyzed in 50 dust samples from an e-waste-dismantling workplace in Central China. The dust concentration of NBFRs in e-waste-dismantling workshops (median, 157−169 ng/g) was found to be significantly higher than those in an outdoor environment (17.3 ng/g) (p < 0.01). Differently, the highest median concentration of HBCDs was found in dust from the dismantling workshop for cellphones and computers (367 ng/g) among studied areas. The bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEHTBP) was the predominant compound, which contributed 66.0−88.0% of measured NBFR concentrations. NBFRs might originate from plastic and rubber materials in wastes based on the correlation and principal component analysis. Moreover, the total estimated daily intakes (average scenario) of NBFRs were calculated at 2.64 × 10−2 ng/kg bw/d and 2.91× 10−2 ng/kg bw/d for the male and female dismantling workers, respectively, via dust ingestion, inhalation, and dermal contact pathways, which were lower than the reference dose values, and thus indicated a limited human exposure risk for NBFRs at the current level. Although the dust concentrations and daily intakes of NBFRs were still lower than those of other emerging pollutants (e.g., organophosphate and nitrogenous flame retardants) measured in the same sampling set, the elevated levels of NBFRs suggested the progressive BFR replacement process in China, which deserves more attention regarding their adverse effects on both the environment and human health.

3.
Environ Int ; 169: 107535, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152360

RESUMO

Liquid crystal monomers (LCMs) are widely used chemicals and ubiquitous emerging organic pollutants in the environment, some of which have persistent, bio-accumulative, and toxic potentials. Elevated levels of LCMs have been found in the e-waste dismantling associated areas. However, information on their internal exposure bio-monitoring is scarce. For the first time, occurrences of LCMs were observed in the serum samples of occupational workers (n = 85) from an e-waste dismantling area in South China. Twenty-nine LCMs were detected in serum samples of the workers, with a median value of 35.2 ng/mL (range: 7.78-276 ng/mL). Eight noticed LCMs were found to have relatively high detection frequencies ranging from 52.9% to 96.5%. The correlation analysis of individual LCMs indicated potential common applications and similar sources to the LCMs in occupational workers. Fluorinated LCMs were identified as the predominant monomers in the workers. Additionally, the estimated daily intake of the LCMs in the occupational workers was significantly higher than those in residents from the reference areas (p < 0.05, Mann-Whitney U Test, median values: 1.46 ng/kg bw/day versus 0.40 ng/kg bw/day), indicating a substantially higher exposure level to e-waste dismantling workers.


Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Cristais Líquidos , China , Monitoramento Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA