Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 91(5): 2045-2065, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27928627

RESUMO

There is increasing interest in the use of quantitative transcriptomic data to determine benchmark dose (BMD) and estimate a point of departure (POD) for human health risk assessment. Although studies have shown that transcriptional PODs correlate with those derived from apical endpoint changes, there is no consensus on the process used to derive a transcriptional POD. Specifically, the subsets of informative genes that produce BMDs that best approximate the doses at which adverse apical effects occur have not been defined. To determine the best way to select predictive groups of genes, we used published microarray data from dose-response studies on six chemicals in rats exposed orally for 5, 14, 28, and 90 days. We evaluated eight approaches for selecting genes for POD derivation and three previously proposed approaches (the lowest pathway BMD, and the mean and median BMD of all genes). The relationship between transcriptional BMDs derived using these 11 approaches and PODs derived from apical data that might be used in chemical risk assessment was examined. Transcriptional BMD values for all 11 approaches were remarkably aligned with corresponding apical PODs, with the vast majority of toxicogenomics PODs being within tenfold of those derived from apical endpoints. We identified at least four approaches that produce BMDs that are effective estimates of apical PODs across multiple sampling time points. Our results support that a variety of approaches can be used to derive reproducible transcriptional PODs that are consistent with PODs produced from traditional methods for chemical risk assessment.


Assuntos
Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Bromobenzenos/administração & dosagem , Bromobenzenos/toxicidade , Clorofenóis/administração & dosagem , Clorofenóis/toxicidade , Feminino , Humanos , Masculino , Nitrosaminas/administração & dosagem , Nitrosaminas/toxicidade , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transcriptoma
2.
Mutat Res Rev Mutat Res ; 764: 64-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26041267

RESUMO

Benzo[a]pyrene (BaP) is a well-studied environmental compound that requires metabolic activation to have a carcinogenic effect. The neurotoxicity of BaP has received considerably less attention than its carcinogenicity. Environmental exposure to BaP correlates with impaired learning and memory in adults, and poor neurodevelopment in children. We carried out a comprehensive literature review to examine the neurotoxicity of BaP. The data were used to identify potential point of departure (POD) values for cancer and neurotoxicity endpoints using benchmark dose (BMD) modelling to compare the utility of both endpoints in the risk assessment of BaP. The POD for neurotoxicity in rodents, based on a standard behavioural test (Morris water maze), was 0.025 mg BaP/kg-bw-day compared to 0.54 mg BaP/kg-bw-day for rodent forestomach carcinogenicity, suggesting that neurotoxic endpoints are more sensitive than cancer endpoints for health risks associated with BaP exposure. Using the limited number of published studies on this topic, we propose a preliminary mode of action (MOA) to explain BaP-induced neurotoxicity in rodents. The MOA includes: (1) BaP binding to the aryl hydrocarbon receptor (AHR); (2) AHR-dependent modulation of the transcription of N-methyl-d-aspartate glutamate receptor (NMDAR) subunits; (3) NMDAR-mediated loss of neuronal activity and decreased long-term potentiation; and (4) compromised learning and memory. More data are needed to explore the proposed neurotoxic MOA. In addition, we consider alternative MOAs, including the hypothesis that BaP-mediated DNA damage may lead to either carcinogenicity or neurotoxicity, depending on the tissue. Our proposed MOA is intended to serve as a basis for hypothesis testing in future studies. We emphasise that further studies are needed to validate the proposed MOA, to evaluate its human relevance, and to explore other potential mechanisms of BaP neurotoxicity.


Assuntos
Benzo(a)pireno/toxicidade , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Animais , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Aprendizagem/efeitos dos fármacos , Neoplasias/induzido quimicamente , Síndromes Neurotóxicas/metabolismo
3.
Crit Rev Toxicol ; 45(1): 44-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25605027

RESUMO

The use of short-term toxicogenomic tests to predict cancer (or other health effects) offers considerable advantages relative to traditional toxicity testing methods. The advantages include increased throughput, increased mechanistic data, and significantly reduced costs. However, precisely how toxicogenomics data can be used to support human health risk assessment (RA) is unclear. In a companion paper ( Moffat et al. 2014 ), we present a case study evaluating the utility of toxicogenomics in the RA of benzo[a]pyrene (BaP), a known human carcinogen. The case study is meant as a proof-of-principle exercise using a well-established mode of action (MOA) that impacts multiple tissues, which should provide a best case example. We found that toxicogenomics provided rich mechanistic data applicable to hazard identification, dose-response analysis, and quantitative RA of BaP. Based on this work, here we share some useful lessons for both research and RA, and outline our perspective on how toxicogenomics can benefit RA in the short- and long-term. Specifically, we focus on (1) obtaining biologically relevant data that are readily suitable for establishing an MOA for toxicants, (2) examining the human relevance of an MOA from animal testing, and (3) proposing appropriate quantitative values for RA. We describe our envisioned strategy on how toxicogenomics can become a tool in RA, especially when anchored to other short-term toxicity tests (apical endpoints) to increase confidence in the proposed MOA, and emphasize the need for additional studies on other MOAs to define the best practices in the application of toxicogenomics in RA.


Assuntos
Benzo(a)pireno/toxicidade , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Humanos , Neoplasias/induzido quimicamente , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA