Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 169(3): 1671-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26265776

RESUMO

Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture.


Assuntos
Arabidopsis/metabolismo , Carbono/metabolismo , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos da radiação , Luz , Modelos Biológicos , NADP/metabolismo , Fenótipo , Folhas de Planta/efeitos da radiação
2.
Plant J ; 75(6): 1050-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23738527

RESUMO

Flux balance models of metabolism generally utilize synthesis of biomass as the main determinant of intracellular fluxes. However, the biomass constraint alone is not sufficient to predict realistic fluxes in central heterotrophic metabolism of plant cells because of the major demand on the energy budget due to transport costs and cell maintenance. This major limitation can be addressed by incorporating transport steps into the metabolic model and by implementing a procedure that uses Pareto optimality analysis to explore the trade-off between ATP and NADPH production for maintenance. This leads to a method for predicting cell maintenance costs on the basis of the measured flux ratio between the oxidative steps of the oxidative pentose phosphate pathway and glycolysis. We show that accounting for transport and maintenance costs substantially improves the accuracy of fluxes predicted from a flux balance model of heterotrophic Arabidopsis cells in culture, irrespective of the objective function used in the analysis. Moreover, when the new method was applied to cells under control, elevated temperature and hyper-osmotic conditions, only elevated temperature led to a substantial increase in cell maintenance costs. It is concluded that the hyper-osmotic conditions tested did not impose a metabolic stress, in as much as the metabolic network is not forced to devote more resources to cell maintenance.


Assuntos
Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Compartimento Celular , Metabolismo Energético , Estresse Fisiológico , Trifosfato de Adenosina/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Compartimento Celular/genética , Metabolismo Energético/genética , Genoma de Planta , Temperatura Alta , NADP/genética , NADP/metabolismo , Pressão Osmótica , Fenótipo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA