Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
ACS Infect Dis ; 2(12): 917-922, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27696820

RESUMO

The α-Gal antigen [Galα(1,3)Galß(1,4)GlcNAcα] is an immunodominant epitope displayed by infective trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. A virus-like particle displaying a high density of α-Gal was found to be a superior reagent for the ELISA-based serological diagnosis of Chagas disease and the assessment of treatment effectiveness. A panel of sera from patients chronically infected with T. cruzi, both untreated and benznidazole-treated, was compared with sera from patients with leishmaniasis and from healthy donors. The nanoparticle-α-Gal construct allowed for perfect discrimination between Chagas patients and the others, avoiding false negative and false positive results obtained with current state-of-the-art reagents. As previously reported with purified α-Gal-containing glycosylphosphatidylinositol-anchored mucins, the current study also showed concentrations of anti-α-Gal IgG to decrease substantially in patients receiving treatment with benznidazole, suggesting that the semiquantitative assessment of serum levels of this highly abundant type of antibody can report on disease status in individual patients.


Assuntos
Doença de Chagas/diagnóstico , Trissacarídeos/análise , Trypanosoma cruzi/isolamento & purificação , Anticorpos Antiprotozoários/análise , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/análise , Antígenos de Protozoários/imunologia , Doença de Chagas/parasitologia , Ensaio de Imunoadsorção Enzimática , Humanos , Trissacarídeos/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Vírus/genética , Vírus/metabolismo
2.
An Acad Bras Cienc ; 86(4): 1563-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25590700

RESUMO

Chemical transformations of eremantholide C (1), a sesquiterpene lactone that was isolated from Lychnophora trichocarpha Spreng. led to five new derivatives: 1',2'- epoxyeremantholide C (2), 5-n-propylamine-4,5-dihydro-1',2'-epoxyeremantholide C (3), 5-n-propylammonium-4,5-dihydro-1',2'-epoxyeremantholide C chloride (4), 5-n-propylammonium-4,5-dihydroeremantolide C chloride (5) and 16-O-ethyleremantholide C (6). The structures of all these derivatives were assigned on the basis of IR, MS, 1H and 13C NMR data by 1D and 2D techniques. Eremantholide C and the derivatives 2, 4 and 5 were evaluated against trypomastigotes Y and CL strains of Trypanosoma cruzi. Eremantholide C completely inhibited the growth of both the parasites strains while all derivatives were partially active against the CL strain and inactive against the Y strain.


Assuntos
Asteraceae/química , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Parasitária , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
3.
Mem Inst Oswaldo Cruz ; 105(2): 233-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20428688

RESUMO

Chagas disease, a neglected illness, affects nearly 12-14 million people in endemic areas of Latin America. Although the occurrence of acute cases sharply has declined due to Southern Cone Initiative efforts to control vector transmission, there still remain serious challenges, including the maintenance of sustainable public policies for Chagas disease control and the urgent need for better drugs to treat chagasic patients. Since the introduction of benznidazole and nifurtimox approximately 40 years ago, many natural and synthetic compounds have been assayed against Trypanosoma cruzi, yet only a few compounds have advanced to clinical trials. This reflects, at least in part, the lack of consensus regarding appropriate in vitro and in vivo screening protocols as well as the lack of biomarkers for treating parasitaemia. The development of more effective drugs requires (i) the identification and validation of parasite targets, (ii) compounds to be screened against the targets or the whole parasite and (iii) a panel of minimum standardised procedures to advance leading compounds to clinical trials. This third aim was the topic of the workshop entitled Experimental Models in Drug Screening and Development for Chagas Disease, held in Rio de Janeiro, Brazil, on the 25th and 26th of November 2008 by the Fiocruz Program for Research and Technological Development on Chagas Disease and Drugs for Neglected Diseases Initiative. During the meeting, the minimum steps, requirements and decision gates for the determination of the efficacy of novel drugs for T. cruzi control were evaluated by interdisciplinary experts and an in vitro and in vivo flowchart was designed to serve as a general and standardised protocol for screening potential drugs for the treatment of Chagas disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Camundongos , Tripanossomicidas/toxicidade
4.
Mem. Inst. Oswaldo Cruz ; 105(2): 233-238, Mar. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-544632

RESUMO

Chagas disease, a neglected illness, affects nearly 12-14 million people in endemic areas of Latin America. Although the occurrence of acute cases sharply has declined due to Southern Cone Initiative efforts to control vector transmission, there still remain serious challenges, including the maintenance of sustainable public policies for Chagas disease control and the urgent need for better drugs to treat chagasic patients. Since the introduction of benznidazole and nifurtimox approximately 40 years ago, many natural and synthetic compounds have been assayed against Trypanosoma cruzi, yet only a few compounds have advanced to clinical trials. This reflects, at least in part, the lack of consensus regarding appropriate in vitro and in vivo screening protocols as well as the lack of biomarkers for treating parasitaemia. The development of more effective drugs requires (i) the identification and validation of parasite targets, (ii) compounds to be screened against the targets or the whole parasite and (iii) a panel of minimum standardised procedures to advance leading compounds to clinical trials. This third aim was the topic of the workshop entitled Experimental Models in Drug Screening and Development for Chagas Disease, held in Rio de Janeiro, Brazil, on the 25th and 26th of November 2008 by the Fiocruz Program for Research and Technological Development on Chagas Disease and Drugs for Neglected Diseases Initiative. During the meeting, the minimum steps, requirements and decision gates for the determination of the efficacy of novel drugs for T. cruzi control were evaluated by interdisciplinary experts and an in vitro and in vivo flowchart was designed to serve as a general and standardised protocol for screening potential drugs for the treatment of Chagas disease.


Assuntos
Animais , Feminino , Masculino , Camundongos , Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Doença Aguda , Doença Crônica , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Tripanossomicidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA