Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(19): 195901, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29582782

RESUMO

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

2.
Phys Rev Lett ; 94(3): 036404, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698293

RESUMO

Computation of ionic forces using quantum Monte Carlo methods has long been a challenge. We introduce a simple procedure, based on known properties of physical electronic densities, to make the variance of the Hellmann-Feynman estimator finite. We obtain very accurate geometries for the molecules H(2), LiH, CH(4), NH(3), H(2)O, and HF, with a Slater-Jastrow trial wave function. Harmonic frequencies for diatomics are also in good agreement with experiment. An antithetical sampling method is also discussed for additional reduction of the variance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA