Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EBioMedicine ; 84: 104251, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088684

RESUMO

BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change. FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.


Assuntos
Mudança Climática , Temperatura Alta , Cidades , Meio Ambiente , Finlândia , Humanos , Mortalidade
2.
Environ Health Perspect ; 130(9): 96001, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36053724

RESUMO

BACKGROUND: Transnational immigration has increased since the 1950s. In countries such as the United States, immigrants now account for >15% of the population. Although differences in health between immigrants and nonimmigrants are well documented, it is unclear how environmental exposures contribute to these disparities. OBJECTIVES: We summarized current knowledge comparing immigrants' and nonimmigrants' exposure to and health effects of environmental exposures. METHODS: We conducted a title and abstract review on articles identified through PubMed and selected those that assessed environmental exposures or health effects separately for immigrants and nonimmigrants. After a full text review, we extracted the main findings from eligible studies and categorized each article as exposure-focused, health-focused, or both. We also noted each study's exposure of interest, study location, exposure and statistical methods, immigrant and comparison groups, and the intersecting socioeconomic characteristics controlled for. RESULTS: We conducted a title and abstract review on 3,705 articles, a full text review on 84, and extracted findings from 50 studies. There were 43 studies that investigated exposure (e.g., metals, organic compounds, fine particulate matter, hazardous air pollutants) disparities, but only 12 studies that assessed health disparities (e.g., mortality, select morbidities). Multiple studies reported higher exposures in immigrants compared with nonimmigrants. Among immigrants, studies sometimes observed exposure disparities by country of origin and time since immigration. Of the 50 studies, 43 were conducted in North America. DISCUSSION: The environmental health of immigrants remains an understudied area, especially outside of North America. Although most identified studies explored potential exposure disparities, few investigated subsequent differences in health effects. Future research should investigate environmental health disparities of immigrants, especially outside North America. Additional research gaps include the role of immigrants' country of origin and time since immigration, as well as the combined effects of immigrant status with intersecting socioeconomic characteristics, such as race/ethnicity, income, and education attainment. https://doi.org/10.1289/EHP9855.


Assuntos
Emigrantes e Imigrantes , Emigração e Imigração , Saúde Ambiental , Estudos Epidemiológicos , Humanos , Renda , Estados Unidos/epidemiologia
3.
J Occup Environ Med ; 64(11): e690-e694, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35941745

RESUMO

OBJECTIVE: This study aimed to determine the association between maximum daily temperature and work-related injuries according to employment status in South Korea. METHODS: Data on workers' compensation claims and daily maximum temperature between May 20 and September 10, 2017-2018, were collected and analyzed. The absolute temperature risk effect (ATR) was evaluated by comparing the risk effect at 2 temperatures (30°C vs 33°C) across all communities using 2-stage time-series analysis. RESULTS: The association between high temperatures and work-related injuries was statistically significant in the construction sector (ATR, 1.129; 95% confidence interval [CI], 1.010-1.261). In addition, the findings of this study also demonstrated a higher risk effect among nonpermanent workers (ATR, 1.109; 95% CI, 1.013-1.214) at 33°C versus 30°C when compared with permanent workers (ATR, 0.963; 95% CI, 0.891-1.041). CONCLUSIONS: This study found a significant association between high temperatures and work-related injuries among nonpermanent workers in South Korea.


Assuntos
Exposição Ocupacional , Traumatismos Ocupacionais , Humanos , Traumatismos Ocupacionais/epidemiologia , Temperatura , Indenização aos Trabalhadores , Emprego , República da Coreia/epidemiologia
4.
Sci Total Environ ; 787: 147672, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000533

RESUMO

BACKGROUND: Health disparities exist between urban and rural populations, yet research on rural-urban disparities in temperature-mortality relationships is limited. As inequality in the United States increases, understanding urban-rural and regional differences in the temperature-mortality association is crucial. OBJECTIVE: We examined regional and urban-rural differences of the temperature-mortality association in North Carolina (NC), USA, and investigated potential effect modifiers. METHODS: We applied time-series models allowing nonlinear temperature-mortality associations for 17 years (2000-2016) to generate heat and cold county-specific estimates. We used second-stage analysis to quantify the overall effects. We also explored potential effect modifiers (e.g. social associations, greenness) using stratified analysis. The analysis considered relative effects (comparing risks at 99th to 90th temperature percentiles based on county-specific temperature distributions for heat, and 1st to 10th percentiles for cold) and absolute effects (comparing risks at specific temperatures). RESULTS: We found null effects for heat-related mortality (relative effect: 1.001 (95% CI: 0.995-1.007)). Overall cold-mortality risk for relative effects was 1.019 (1.015-1.023). All three regions had statistically significant cold-related mortality risks for relative and absolute effects (relative effect: 1.019 (1.010-1.027) for Coastal Plains, 1.021 (1.015-1.027) for Piedmont, 1.014 (1.006-1.023) for Mountains). The heat mortality risk was not statistically significant, whereas the cold mortality risk was statistically significant, showing higher cold-mortality risks in urban areas than rural areas (relative effect for heat: 1.006 (0.997-1.016) for urban, 1.002 (0.988-1.017) for rural areas; relative effect for cold: 1.023 (1.017-1.030) for urban, 1.012 (1.001-1.023) for rural areas). Findings are suggestive of higher relative cold risks in counties with the less social association, higher population density, less green-space, higher PM2.5, lower education level, higher residential segregation, higher income inequality, and higher income (e.g., Ratio of Relative Risks 1.72 (0.68, 4.35) comparing low to high education). CONCLUSION: Results indicate cold-mortality risks in NC, with potential differences by regional, urban-rural areas, and community characteristics.


Assuntos
Temperatura Baixa , População Rural , Temperatura Alta , Humanos , North Carolina/epidemiologia , Temperatura , Estados Unidos , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA