RESUMO
Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.
Assuntos
Epitopos/imunologia , Vetores Genéticos/imunologia , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Adenovirus dos Símios/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Vacínia/imunologia , Vaccinia virus/imunologia , Adulto JovemRESUMO
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.
Assuntos
Adenoviridae/imunologia , Antígenos de Protozoários/imunologia , Imunidade Humoral/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Vacinação/métodos , Vaccinia virus/imunologia , Adenoviridae/genética , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Sangue/parasitologia , Exposição Ambiental/efeitos adversos , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Vacinas Antimaláricas/genética , Malária Falciparum/sangue , Malária Falciparum/imunologia , Pan troglodytes , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Especificidade da Espécie , Vaccinia virus/genéticaRESUMO
Overcoming antigenic variation is one of the major challenges in the development of an effective vaccine against Plasmodium falciparum, a causative agent of human malaria. Inclusion of multiple Ag variants in subunit vaccine candidates is one strategy that has aimed to overcome this problem for the leading blood-stage malaria vaccine targets, that is, merozoite surface protein 1 (MSP1) and apical membrane Ag 1 (AMA1). However, previous studies, utilizing malaria Ags, have concluded that inclusion of multiple allelic variants, encoding altered peptide ligands, in such a vaccine may be detrimental to both the priming and in vivo restimulation of Ag-experienced T cells. In this study, we analyze the T cell responses to two alleles of MSP1 and AMA1 induced by vaccination of malaria-naive adult volunteers with bivalent viral-vectored vaccine candidates. We show a significant bias to the 3D7/MAD20 allele compared with the Wellcome allele for the 33 kDa region of MSP1, but not for the 19 kDa fragment or the AMA1 Ag. Although this bias could be caused by "immune interference" at priming, the data do not support a significant role for "immune antagonism" during memory T cell restimulation, despite observation of the latter at a minimal epitope level in vitro. A lack of class I HLA epitopes in the Wellcome allele that are recognized by vaccinated volunteers may in fact contribute to the observed bias. We also show that controlled infection with 3D7 strain P. falciparum parasites neither boosts existing 3D7-specific T cell responses nor appears to "immune divert" cellular responses toward the Wellcome allele.
Assuntos
Antígenos de Protozoários/imunologia , Memória Imunológica/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Linfócitos T/imunologia , Adenoviridae/genética , Adulto , Alelos , Anticorpos Antiprotozoários/imunologia , Variação Antigênica/genética , Antígenos de Protozoários/genética , Vírus Defeituosos/genética , Epitopos/imunologia , Eritrócitos/parasitologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Antígenos HLA/imunologia , Humanos , Interferon gama/biossíntese , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/genética , Proteína 1 de Superfície de Merozoito/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Vaccinia virus/genéticaRESUMO
The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.