Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(12): 108375, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025773

RESUMO

Accurate assessment of coal mine methane (CMM) emissions is a prerequisite for defining baselines and assessing the effectiveness of mitigation measures. Such an endeavor is jeopardized, however, by large uncertainties in current CMM estimates. Here, we assimilated atmospheric methane column concentrations observed by the TROPOMI space borne instrument in a high-resolution regional inversion to estimate CMM emissions in Shanxi, a province representing 15% of the global coal production. The emissions are estimated to be 8.5 ± 0.6 and 8.6 ± 0.6 Tg CH4 yr-1 in 2019 and 2020, respectively, close to upper bound of current bottom-up estimates. Data from more than a thousand of individual mines indicate that our estimated emission factors increase significantly with coal mining depth at prefecture level, suggesting that ongoing deeper mining will increase CMM emission intensity. Our results show robustness of estimating CMM emissions utilizing TROPOMI images and highlight potential of monitoring methane leakages and emissions from satellites.

2.
J Environ Manage ; 345: 118799, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690242

RESUMO

The impact of climate change on power demand in Japan and its related CO2 emissions is a matter of concern for the Japanese authorities and power companies as it may have consequences on the power grid, but is also of global importance as Japan is a significant contributor to global greenhouse gas emissions. In this study, we trained random forest models against daily power data in ten Japanese regions and for different types of power generation to project changes in future power production and its carbon intensity. We used climate variables, heat stress indices, and one variable for the level of human activities. We then used the models trained from the present-day period to estimate the future power demand, carbon intensity, and pertaining CO2 emissions over the period 2020-2100 under three Shared Socioeconomic Pathways (SSPs) scenarios (SSP126, SSP370, and SSP585). The impact of climate change on CO2 emissions via power generation shows seasonal and regional disparities. In cold regions, a decrease in power demand during winter under future warming leads to an overall decrease in power demand over the year. In contrast, the decrease in winter power demand in hot regions can be overcompensated by an increase in summer power demand due to more frequent hot days, resulting in an overall annual increase. From our regional models, power demand is projected to increase the most in most Japanese regions in May, June, September, and October rather than in the middle of summer, as found in previous studies. This increase could result in regular power outages during those months as the power grid could become particularly tense. Overall, we observed that power demand in regions with extreme climates is more sensitive to global warming than in temperate regions. The impact of climate change on power demand induces a net annual decrease in CO2 emissions in all regions except for Okinawa, in which power demand strongly increases during the summer, resulting in a net annual increase in CO2 emissions. However, climate change's impact on carbon intensity may reverse the trend in some regions (Shikoku, Tohoku). Additionally, we assessed the relative impacts of socioeconomic factors such as population, GDP, and environmental policies on CO2 emissions. When combined with these factors, we found that the climate change effect is more important than when considered individually and significantly impacts total CO2 emissions under SSP585. The contrasting results observed in the warm and cold regions of Japan can offer valuable insight into the potential future variations in energy demand and resulting CO2 emissions on a global scale.


Assuntos
Dióxido de Carbono , Mudança Climática , Humanos , Dióxido de Carbono/análise , Japão , Aquecimento Global , Carbono/análise
3.
Glob Chang Biol ; 29(12): 3421-3432, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949006

RESUMO

The tropical forest carbon (C) balance threatened by extensive socio-economic development in the Greater Mekong Subregion (GMS) in Asia is a notable data gap and remains contentious. Here we generated a long-term spatially quantified assessment of changes in forests and C stocks from 1999 to 2019 at a spatial resolution of 30 m, based on multiple streams of state-of-the-art high-resolution satellite imagery and in situ observations. Our results show that (i) about 0.54 million square kilometers (21.0% of the region) experienced forest cover transitions with a net increase in forest cover by 4.3% (0.11 million square kilometers, equivalent to 0.31 petagram of C [Pg C] stocks); (ii) forest losses mainly in Cambodia, Thailand, and in the south of Vietnam, were also counteracted by forest gains in China due mainly to afforestation; and (iii) at the national level during the study period an increase in both C stocks and C sequestration (net C gain of 0.087 Pg C) in China from new plantation, offset anthropogenetic emissions (net C loss of 0.074 Pg C) mainly in Cambodia and Thailand from deforestation. Political, social, and economic factors significantly influenced forest cover change and C sequestration in the GMS, positively in China while negatively in other countries, especially in Cambodia and Thailand. These findings have implications on national strategies for climate change mitigation and adaptation in other hotspots of tropical forests.


Assuntos
Efeitos Antropogênicos , Carbono , Carbono/análise , Florestas , Tailândia , Sequestro de Carbono , Conservação dos Recursos Naturais , Árvores
4.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553464

RESUMO

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Assuntos
Atmosfera , Metano , Animais , China , Gado , Metano/análise , Oceanos e Mares
5.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691569

RESUMO

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

7.
Glob Chang Biol ; 27(19): 4671-4685, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089552

RESUMO

Given the prospects of low short-term emissions reduction, carbon removals (CDRs) are expected to play an important role in achieving ambitious mitigation targets in future scenarios of integrated assessment models (IAMs), particularly Bioenergy with Carbon Capture and Storage (BECCS). In this paper, we explore the IAMC 1.5℃ database to depict the characteristics of the two main CDR options present in mitigation scenarios: BECCS and afforestation/reforestation. We apply a linear mixed-effect model to capture the specific regional and cross-IAM effects. Results reveal that the distribution of BECCS and afforestation deployment differs across IAMs and regions and, to a second extent, time. BECCS is preferred in the scenarios not for its ability to expand energy use but actually because it appears as an alternative to afforestation, which is associated with a decrease in energy use. However, the regional distribution of CDR deployment does not show a common pattern across scenarios and IAMs. Therefore, a more comprehensive investigation is needed before it can support policy proposals.


Assuntos
Sequestro de Carbono , Carbono , Biomassa
8.
Sci Adv ; 7(22)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34049873

RESUMO

Greenhouse gas (GHG) metrics, that is, conversion factors to evaluate the emissions of non-CO2 GHGs on a common scale with CO2, serve crucial functions in the implementation of the Paris Agreement. While different metrics have been proposed, their economic cost-effectiveness has not been investigated under a range of pathways, including those substantially overshooting the temperature targets. Here, we show that cost-effective metrics for methane that minimize the overall mitigation costs are time-dependent, primarily determined by the pathway, and strongly influenced by temperature overshoot. Parties to the Paris Agreement have already adopted the conventional GWP100 (100-year global warming potential), which is shown to be a good approximation of cost-effective metrics for the coming decades. In the longer term, however, we suggest that parties consider adapting the choice of common metrics to the future pathway as it unfolds, as part of the recurring global stocktake, if global cost-effectiveness is a key consideration.

9.
Nat Commun ; 11(1): 5172, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057164

RESUMO

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/economia , Betacoronavirus , COVID-19 , Dióxido de Carbono/economia , Infecções por Coronavirus/economia , Infecções por Coronavirus/prevenção & controle , Monitoramento Ambiental , Combustíveis Fósseis/análise , Combustíveis Fósseis/economia , Humanos , Indústrias/economia , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/economia , Pandemias/economia , Pandemias/prevenção & controle , Pneumonia Viral/economia , Pneumonia Viral/prevenção & controle , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 117(14): 7702-7711, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209665

RESUMO

Increased human water use combined with climate change have aggravated water scarcity from the regional to global scales. However, the lack of spatially detailed datasets limits our understanding of the historical water use trend and its key drivers. Here, we present a survey-based reconstruction of China's sectoral water use in 341 prefectures during 1965 to 2013. The data indicate that water use has doubled during the entire study period, yet with a widespread slowdown of the growth rates from 10.66 km3⋅y-2 before 1975 to 6.23 km3⋅y-2 in 1975 to 1992, and further down to 3.59 km3⋅y-2 afterward. These decelerations were attributed to reduced water use intensities of irrigation and industry, which partly offset the increase driven by pronounced socioeconomic development (i.e., economic growth, population growth, and structural transitions) by 55% in 1975 to 1992 and 83% after 1992. Adoptions for highly efficient irrigation and industrial water recycling technologies explained most of the observed reduction of water use intensities across China. These findings challenge conventional views about an acceleration in water use in China and highlight the opposing roles of different drivers for water use projections.


Assuntos
Desaceleração , Abastecimento de Água , Água , China , Geografia , Humanos , Fatores Socioeconômicos
11.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31828914

RESUMO

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Assuntos
Dióxido de Carbono , Ecossistema , África , Ásia , Europa (Continente) , América do Norte , América do Sul
12.
Glob Chang Biol ; 25(2): 640-659, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414347

RESUMO

Our understanding and quantification of global soil nitrous oxide (N2 O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2 O emissions for the period 1861-2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N2 O emissions have increased from 6.3 ± 1.1 Tg N2 O-N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2 O-N/year in the recent decade (2007-2016). Cropland soil emissions increased from 0.3 Tg N2 O-N/year to 3.3 Tg N2 O-N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2 O emissions since the 1970s. However, US cropland N2 O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2 O emissions appear to have decreased by 14%. Soil N2 O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2 O-N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2 O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2 O emissions, this study recommends several critical strategies for improving the process-based simulations.


Assuntos
Mudança Climática , Gases de Efeito Estufa/análise , Desenvolvimento Industrial , Óxido Nitroso/análise , Solo/química , Poluentes Atmosféricos/análise , Modelos Teóricos , Fatores de Tempo , Incerteza
13.
Ecol Appl ; 29(2): e01837, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30549378

RESUMO

The future trajectory of atmospheric CO2 concentration depends on the development of the terrestrial carbon sink, which in turn is influenced by forest dynamics under changing environmental conditions. An in-depth understanding of model sensitivities and uncertainties in non-steady-state conditions is necessary for reliable and robust projections of forest development and under scenarios of global warming and CO2 enrichment. Here, we systematically assessed if a biogeochemical process-based model (3D-CMCC-CNR), which embeds similarities with many other vegetation models, applied in simulating net primary productivity (NPP) and standing woody biomass (SWB), maintained a consistent sensitivity to its 55 input parameters through time, during forest ageing and structuring as well as under climate change scenarios. Overall, the model applied at three contrasting European forests showed low sensitivity to the majority of its parameters. Interestingly, model sensitivity to parameters varied through the course of >100 yr of simulations. In particular, the model showed a large responsiveness to the allometric parameters used for initialize forest carbon and nitrogen pools early in forest simulation (i.e., for NPP up to ~37%, 256 g C·m-2 ·yr-1 and for SWB up to ~90%, 65 Mg C/ha, when compared to standard simulation), with this sensitivity decreasing sharply during forest development. At medium to longer time scales, and under climate change scenarios, the model became increasingly more sensitive to additional and/or different parameters controlling biomass accumulation and autotrophic respiration (i.e., for NPP up to ~30%, 167 g C·m-2 ·yr-1 and for SWB up to ~24%, 64 Mg C/ha, when compared to standard simulation). Interestingly, model outputs were shown to be more sensitive to parameters and processes controlling stand development rather than to climate change (i.e., warming and changes in atmospheric CO2 concentration) itself although model sensitivities were generally higher under climate change scenarios. Our results suggest the need for sensitivity and uncertainty analyses that cover multiple temporal scales along forest developmental stages to better assess the potential of future forests to act as a global terrestrial carbon sink.


Assuntos
Carbono , Mudança Climática , Biomassa , Ciclo do Carbono , Florestas
14.
Sci Data ; 5: 180169, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129935

RESUMO

Reliable data on biomass produced by lignocellulosic bioenergy crops are essential to identify sustainable bioenergy sources. Field studies have been performed for decades on bioenergy crops, but only a small proportion of the available data is used to explore future land use scenarios including bioenergy crops. A global dataset of biomass production for key lignocellulosic bioenergy crops is thus needed to disentangle the factors impacting biomass production in different regions. Such dataset will be also useful to develop and assess bioenergy crop modelling in integrated assessment socio-economic models and global vegetation models. Here, we compiled and described a global biomass yield dataset based on field measurements. We extracted 5,088 entries of data from 257 published studies for five main lingocellulosic bioenergy crops: eucalypt, Miscanthus, poplar, switchgrass, and willow. Data are from 355 geographic sites in 31 countries around the world. We also documented the species, plantation practices, climate conditions, soil property, and managements. Our dataset can be used to identify productive bioenergy species over a large range of environments.


Assuntos
Biocombustíveis , Produtos Agrícolas , Agricultura , Biomassa , Mudança Climática
15.
Environ Sci Technol ; 52(10): 6032-6041, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29692172

RESUMO

The carbon intensity of economic activity, or CO2 emissions per unit GDP, is a key indicator of the climate impacts of a given activity, business, or region. Although it is well-known that the carbon intensity of countries varies widely according to their level of economic development and dominant industries, few studies have assessed disparities in carbon intensity at the level of cities due to limited availability of data. Here, we present a detailed new inventory of emissions for 337 Chinese cities (every city in mainland China including 333 prefecture-level divisions and 4 province-level cities, Beijing, Tianjin, Shanghai, and Chongqing) in 2013, which we use to evaluate differences of carbon intensity between cities and the causes of those differences. We find that cities' average carbon intensity is 0.84 kg of CO2 per dollar of gross domestic product (kgCO2 per $GDP), but individual cities span a large range: from 0.09 to 7.86 kgCO2 per $GDP (coefficient of variation of 25%). Further analysis of economic and technological drivers of variations in cities' carbon intensity reveals that the differences are largely due to disparities in cities' economic structure that can in turn be traced to past investment-led growth. These patterns suggest that "carbon lock-in" via socio-economic and infrastructural inertia may slow China's efforts to reduce emissions from activities in urban areas. Policy instruments targeted to accelerate the transition of urban economies from investment-led to consumption-led growth may thus be crucial to China meeting both its economic and climate targets.


Assuntos
Carbono , Desenvolvimento Econômico , China , Cidades , Produto Interno Bruto
16.
J Adv Model Earth Syst ; 10(8): 1790-1808, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31031883

RESUMO

Modeling of global soil organic carbon (SOC) is accompanied by large uncertainties. The heavy computational requirement limits our flexibility in disentangling uncertainty sources especially in high latitudes. We build a structured sensitivity analyzing framework through reorganizing the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE)-aMeliorated Interactions between Carbon and Temperature (MICT) model with vertically discretized SOC into one matrix equation, which brings flexibility in comprehensive sensitivity assessment. Through Sobol's method enabled by the matrix, we systematically rank 34 relevant parameters according to variance explained by each parameter and find a strong control of carbon input and turnover time on long-term SOC storages. From further analyses for each soil layer and regional assessment, we find that the active layer depth plays a critical role in the vertical distribution of SOC and SOC equilibrium stocks in northern high latitudes (>50°N). However, the impact of active layer depth on SOC is highly interactive and nonlinear, varying across soil layers and grid cells. The stronger impact of active layer depth on SOC comes from regions with shallow active layer depth (e.g., the northernmost part of America, Asia, and some Greenland regions). The model is sensitive to the parameter that controls vertical mixing (cryoturbation rate) but only when the vertical carbon input from vegetation is limited since the effect of vertical mixing is relatively small. And the current model structure may still lack mechanisms that effectively bury nonrecalcitrant SOC. We envision a future with more comprehensive model intercomparisons and assessments with an ensemble of land carbon models adopting the matrix-based sensitivity framework.

17.
Sci Rep ; 7(1): 17671, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247185

RESUMO

We analyzed mean height of men born in the 1960s, 1970s and 1980s in 80 countries. Both height and the change in height during the last decades were correlated with N and P intake, as well as the N:P intake ratio. Rich countries had higher per capita N and P intake than poor countries (on average 19.5 ± 0.3 versus 9.66 ± 0.18 kg N y-1 and 2.17 ± 0.04 versus 1.35 ± 0.02 kg P y-1), and also larger increases in per capita N intake (12.1 ± 2.0% vs. 7.0 ± 2.1%) and P intake (7.6 ± 1.0% vs 6.01 ± 0.7%), during the period 1961-2009. The increasing gap in height trends between rich and poor countries is associated with an increasing gap in nutrition, so a more varied diet with higher N, P, and N:P intake is a key factor to improve food intake quality in poor countries and thus shorten the gap with rich countries. More N and P are needed with the consequent requirements for a better management of the socioeconomic and environmental associated problems.


Assuntos
Estatura/fisiologia , Ingestão de Energia/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Fatores Socioeconômicos
18.
Proc Natl Acad Sci U S A ; 113(46): 13104-13108, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799533

RESUMO

Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y-2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.

19.
Nature ; 531(7594): 357-61, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983540

RESUMO

Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.


Assuntos
Poluição do Ar/análise , Atmosfera/química , Efeito Estufa , Aerossóis/análise , Aerossóis/química , Dióxido de Carbono/análise , China , Combustíveis Fósseis , Metano/análise , Fuligem/análise , Sulfatos/análise , Dióxido de Enxofre/análise , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA