Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Expert Rev Med Devices ; 20(12): 1143-1156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965719

RESUMO

INTRODUCTION: This review provides an update of 18 F-fluorodeoxyglucose ([18F] FDG) for Brown adipose tissue (BAT) activity quantification, whose role is not completely understood. AREAS COVERED: We conducted an unstructured search of the literature for any studies employing the [18F] FDG PET in BAT assessment. We explored BAT quantification both in healthy individuals and in different pathologies, after cold exposure and as a metabolic biomarker. The assessment of possible BAT modulators by using [18F] FDG PET is shown. Further PET tracers and novel developments for BAT assessments are also described. EXPERT OPINION: Further PET tracers and imaging modalities are under investigation, but the [18F] FDG PET is currently the method of choice for the evaluation of BAT and further multicentric trials are needed for a better understanding of the BAT physiopathology, also after cold stimuli. The modulation of BAT activity, assessed by [18F] FDG PET imaging, seems a promising tool for the management of conditions such as obesity and type 2 diabetes. Moreover, an interesting possible correlation of BAT activation with prognostic [18F] FDG PET indices in cancer patients should be assessed with further multicentric trials.


Assuntos
Diabetes Mellitus Tipo 2 , Fluordesoxiglucose F18 , Humanos , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Diabetes Mellitus Tipo 2/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Obesidade
2.
J Cardiovasc Dev Dis ; 9(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735810

RESUMO

In chronic heart failure (CHF), abnormalities in cardiac autonomic control, characterized by sympathetic overactivity, contribute to the progression of the disease and are associated with an unfavorable prognosis. Assessing cardiac autonomic status is clinically important in the management of patients with CHF. To this aim, heart rate variability (HRV) analysis has been extensively used as a non-invasive tool for assessing cardiac autonomic regulation, and has been shown to predict the clinical outcome in patients with CHF. Adrenergic nerve activity has also been estimated using iodine-123 (I-123) metaiodobenzylguanidine (MIBG), a noradrenaline analogue. MIBG is an analogue of norepinephrine sharing the same cellular mechanism of uptake, storage, and release in presynaptic sympathetic neurons. As an innervation tracer, 123I-MIBG allows for the evaluation of cardiac sympathetic neuronal function. Cardiac MIBG imaging has also been reported to predict a poor clinical outcome in CHF. MIBG provides direct information on the function of the presynaptic sympathetic nerve endings, whereas HRV, which depends on postsynaptic signal transduction, reflects the end-organ response of the sinus node. The aim of this brief review is to provide the reader with some basic concepts regarding the spectral analysis of HRV and MIBG, highlighting what is known about their respective roles in detecting cardiac sympathetic hyperactivity in CHF and, in perspective, their possible combined use in assessing non-pharmacological treatments in patients with CHF and reduced ejection fraction, with a particular focus on the effects of exercise training.

3.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884804

RESUMO

Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer's disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Carbolinas/farmacologia , Meios de Contraste/farmacologia , Proteínas tau/análise , Biomarcadores/análise , Encéfalo/patologia , Humanos , Tomografia por Emissão de Pósitrons/métodos , Dobramento de Proteína , Traçadores Radioativos , Compostos Radiofarmacêuticos/farmacologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA