Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(6): e1009145, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185778

RESUMO

State-dependent sodium channel blockers are often prescribed to treat cardiac arrhythmias, but many sodium channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a sodium channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the sodium channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-sodium channel interaction by Moreno et al. Specifically, we find that (1) the vast majority of lidocaine bound to sodium channels is in the neutral form, i.e., the binding of charged lidocaine to sodium channels is negligible, and (2) neutral lidocaine binds almost exclusively to inactivated channels and, upon binding, immobilizes channels in the inactivated state. We then develop a novel 3-variable lidocaine-sodium channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates an extensive amount of the voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates.


Assuntos
Coração/efeitos dos fármacos , Lidocaína/farmacologia , Lidocaína/farmacocinética , Modelos Cardiovasculares , Miocárdio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/farmacocinética , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Biologia Computacional , Simulação por Computador , Frequência Cardíaca/fisiologia , Humanos , Cinética , Cadeias de Markov , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
2.
PLoS Comput Biol ; 6(1): e1000658, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20126530

RESUMO

Acute effects of sex steroid hormones likely contribute to the observation that post-pubescent males have shorter QT intervals than females. However, the specific role for hormones in modulating cardiac electrophysiological parameters and arrhythmia vulnerability is unclear. Here we use a computational modeling approach to incorporate experimentally measured effects of physiological concentrations of testosterone, estrogen and progesterone on cardiac ion channel targets. We then study the hormone effects on ventricular cell and tissue dynamics comprised of Faber-Rudy computational models. The "female" model predicts changes in action potential duration (APD) at different stages of the menstrual cycle that are consistent with clinically observed QT interval fluctuations. The "male" model predicts shortening of APD and QT interval at physiological testosterone concentrations. The model suggests increased susceptibility to drug-induced arrhythmia when estradiol levels are high, while testosterone and progesterone are apparently protective. Simulations predict the effects of sex steroid hormones on clinically observed QT intervals and reveal mechanisms of estrogen-mediated susceptibility to prolongation of QT interval. The simulations also indicate that acute effects of estrogen are not alone sufficient to cause arrhythmia triggers and explain the increased risk of females to Torsades de Pointes. Our results suggest that acute effects of sex steroid hormones on cardiac ion channels are sufficient to account for some aspects of gender specific susceptibility to long-QT linked arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Simulação por Computador , Suscetibilidade a Doenças , Hormônios Esteroides Gonadais/metabolismo , Potenciais de Ação , Animais , Antiarrítmicos/farmacologia , Células Cultivadas , Eletrocardiografia , Estrogênios/metabolismo , Feminino , Cobaias , Masculino , Cadeias de Markov , Ciclo Menstrual/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/farmacologia , Canais de Potássio , Progesterona/metabolismo , Piridinas/farmacologia , Testosterona/metabolismo
3.
Circulation ; 105(10): 1208-13, 2002 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11889015

RESUMO

BACKGROUND: Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na(+) channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na(+) channel function, and Brugada with reduced function. METHODS AND RESULTS: Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na(+) channels. By incorporating the models into a virtual transgenic cell, we elucidate the mechanism by which 1795insD differentially disrupts cellular electrical behavior in epicardial and midmyocardial cell types. We provide a cellular mechanistic basis for the ECG abnormalities observed in patients carrying the 1795insD gene mutation. CONCLUSIONS: We demonstrate that the 1795insD mutation can cause both LQT and Brugada syndromes through interaction with the heterogeneous myocardium in a rate-dependent manner. The results highlight the complexity and multiplicity of genotype-phenotype relationships, and the usefulness of computational approaches in establishing a mechanistic link between genetic defects and functional abnormalities.


Assuntos
Arritmias Cardíacas/etiologia , Simulação por Computador , Modelos Cardiovasculares , Mutação/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/fisiologia , Eletrocardiografia , Ventrículos do Coração/citologia , Humanos , Internet , Ativação do Canal Iônico/fisiologia , Síndrome do QT Longo/etiologia , Cadeias de Markov , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Fenótipo , Reprodutibilidade dos Testes , Sódio/metabolismo , Relação Estrutura-Atividade , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA