Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiologyopen ; 9(12): e1133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33225533

RESUMO

Common bottlenecks in environmental and crop microbiome studies are the consumable and personnel costs necessary for genomic DNA extraction and sequencing library construction. This is harder for challenging environmental samples such as soil, which is rich in Polymerase Chain Reaction (PCR) inhibitors. To address this, we have established a low-cost genomic DNA extraction method for soil samples. We also present an Illumina-compatible 16S and ITS rRNA gene amplicon library preparation workflow that uses common laboratory equipment. We evaluated the performance of our genomic DNA extraction method against two leading commercial soil genomic DNA kits (MoBio PowerSoil® and MP Biomedicals™ FastDNA™ SPIN) and a recently published non-commercial extraction method by Zou et al. (PLoS Biology, 15, e2003916, 2017). Our benchmarking experiment used four different soil types (coniferous, broad-leafed, and mixed forest plus a standardized cereal crop compost mix) assessing the quality and quantity of the extracted genomic DNA by analyzing sequence variants of 16S V4 and ITS rRNA amplicons. We found that our genomic DNA extraction method compares well to both commercially available genomic DNA extraction kits in DNA quality and quantity. The MoBio PowerSoil® kit, which relies on silica column-based DNA extraction with extensive washing, delivered the cleanest genomic DNA, for example, best A260:A280 and A260:A230 absorbance ratios. The MP Biomedicals™ FastDNA™ SPIN kit, which uses a large amount of binding material, yielded the most genomic DNA. Our method fits between the two commercial kits, producing both good yields and clean genomic DNA with fragment sizes of approximately 10 kb. Comparative analysis of detected amplicon sequence variants shows that our method correlates well with the two commercial kits. Here, we present a low-cost genomic DNA extraction method for soil samples that can be coupled to an Illumina-compatible simple two-step amplicon library construction workflow for 16S V4 and ITS marker genes. Our method delivers high-quality genomic DNA at a fraction of the cost of commercial kits and enables cost-effective, large-scale amplicon sequencing projects. Notably, our extracted gDNA molecules are long enough to be suitable for downstream techniques such as full gene sequencing or even metagenomics shotgun approaches using long reads (PacBio or Nanopore), 10x Genomics linked reads, and Dovetail genomics.


Assuntos
DNA Bacteriano/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Microbiota/genética , Microbiologia do Solo , DNA Bacteriano/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Solo
2.
Gigascience ; 8(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624602

RESUMO

BACKGROUND: A high-quality genome sequence of any model organism is an essential starting point for genetic and other studies. Older clone-based methods are slow and expensive, whereas faster, cheaper short-read-only assemblies can be incomplete and highly fragmented, which minimizes their usefulness. The last few years have seen the introduction of many new technologies for genome assembly. These new technologies and associated new algorithms are typically benchmarked on microbial genomes or, if they scale appropriately, on larger (e.g., human) genomes. However, plant genomes can be much more repetitive and larger than the human genome, and plant biochemistry often makes obtaining high-quality DNA that is free from contaminants difficult. Reflecting their challenging nature, we observe that plant genome assembly statistics are typically poorer than for vertebrates. RESULTS: Here, we compare Illumina short read, Pacific Biosciences long read, 10x Genomics linked reads, Dovetail Hi-C, and BioNano Genomics optical maps, singly and combined, in producing high-quality long-range genome assemblies of the potato species Solanum verrucosum. We benchmark the assemblies for completeness and accuracy, as well as DNA compute requirements and sequencing costs. CONCLUSIONS: The field of genome sequencing and assembly is reaching maturity, and the differences we observe between assemblies are surprisingly small. We expect that our results will be helpful to other genome projects, and that these datasets will be used in benchmarking by assembly algorithm developers.


Assuntos
Genoma de Planta , Genômica/métodos , Análise de Sequência de DNA/métodos , Mapeamento de Sequências Contíguas , Custos e Análise de Custo , Genes de Plantas , Genômica/economia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA/economia , Solanaceae/genética
3.
Gigascience ; 7(5)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29762659

RESUMO

Background: The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Results: Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Conclusions: Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.


Assuntos
Biblioteca Gênica , Genoma de Planta , Análise de Sequência de DNA/métodos , Triticum/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas
4.
J Dent Educ ; 73(8): 919-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19648563

RESUMO

Dentists are self-selected for visual and kinesthetic learning preferences. Watching another practitioner perform treatment can be incredibly didactic, both before and after learning the procedure. This missing part of dental education has the capacity to play a tremendous role in dental education for all levels of practitioner. Dental students in their clinical years begin to realize the meaning of dentistry as a practice, a set of skills that are never perfected. Abundant evidence demonstrates that cycling between observation and practice enhances procedural learning and retention, yet this mechanism is vastly underused in dental education. Collaborative treatment paradigms, wherein the able student assists a more experienced practitioner, can create mentorship. Learning potentially esoteric information or subtle nuances of clinical acumen is facilitated by the contextual framework of the clinical environment and is strengthened by emotional attachments through interpersonal interactions. In this article, we explore the evidence surrounding mentorship and clinical observation both before and after students are given the responsibilities of patient care, which together recapitulate clinical apprenticeship. Finally, we present examples of how apprenticeship can be brought back to dental education, including evaluation of a clinical assisting program that we implemented and explanation of a hypothetical faculty-student practice partnership model.


Assuntos
Educação em Odontologia , Aprendizagem , Observação , Preceptoria , Ensino/métodos , Atitude , Córtex Cerebral/fisiologia , Competência Clínica , Currículo , Assistência Odontológica , Educação Continuada em Odontologia , Educação Pré-Odontológica , Docentes de Odontologia , Humanos , Relações Interpessoais , Memória , Mentores , Multimídia , Prática Psicológica , Resolução de Problemas , Desenvolvimento de Programas , Faculdades de Odontologia/economia , Ciência/educação , Autoimagem , Estudantes de Odontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA