Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Environ Res ; 196: 106404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341981

RESUMO

Shellfish species, including oysters, clams, and mussels, are extensively cultured in coastal waters. Its location is determined by factors such as nutrient availability, water temperature, tidal cycle, and the presence of contaminants such as Escherichia coli and enteric viruses. With the expansion and intensification of human activities at vicinities, the presence of anthropogenic contaminants has increased, threatening shellfish farms and consumer safety give the prevalent consumption of raw shellfish. This literature review aims to provide a comprehensive analysis of the dietary exposure and assess the risk associated with enteric viruses and bacteria detected in shellfish. The predominant bacteria and viruses detected in shellfish are reported, and the potential interrelation is discussed. The main characteristics of each contaminant and shellfish were reviewed for a more comprehensive understanding. To facilitate a direct estimation of exposure, the estimated daily intake (EDI) of bacteria was calculated based on the average levels of E. coli in shellfish, as reported in the literature. The mean daily ingestion of seafood in each of the five continents was considered. Asia exhibited the highest intake of contaminants, with an average of ±5.6 E. coli units/day.kg body weight in cockles. Simulations were conducted using recommended shellfish consumption levels established by state agencies, revealing significantly lower (p < 0.01) EDI for all continents compared to estimations based on recommended levels. This indicates a higher risk associated with healthy shellfish ingestion, potentially leading to increased intoxication incidents with a change in dietary habits. To promote a healthier lifestyle through increased shellfish consumptions, it is imperative to reduce the exposure of shellfish species to bacteria and enteric viruses. The conventional use of E. coli as the sole indicator for consumption safety and water quality in shellfish farms has been deemed insufficient. Instances where shellfish met E. coli limits established by state agencies were often found to be contaminated with human enteric viruses. Therefore, a holistic approach considering the entire production chain is necessary to support the shellfish industry and ensure food safety.


Assuntos
Bivalves , Enterovirus , Vírus , Animais , Humanos , Escherichia coli , Frutos do Mar/análise , Alimentos Marinhos , Contaminação de Alimentos/análise
2.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360652

RESUMO

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Assuntos
Mudança Climática , Alimentos Marinhos , Animais , Estágios do Ciclo de Vida
3.
Sci Total Environ ; 603-604: 627-638, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28654878

RESUMO

Contamination of receiving waters with pharmaceutical compounds is of pressing concern. This constitutes the first study to report on the development of a semi-quantitative risk assessment (RA) model for evaluating the environmental threat posed by three EU watch list pharmaceutical compounds namely, diclofenac, 17-beta-estradiol and 17-alpha-ethinylestradiol, to aquatic ecosystems using Irish data as a case study. This RA model adopts the Irish Environmental Protection Agency Source-Pathway-Receptor concept to define relevant parameters for calculating low, medium or high risk score for each agglomeration of wastewater treatment plant (WWTP), which include catchment, treatments, operational and management factors. This RA model may potentially be used on a national scale to (i) identify WWTPs that pose a particular risk as regards releasing disproportionally high levels of these pharmaceutical compounds, and (ii) help identify priority locations for introducing or upgrading control measures (e.g. tertiary treatment, source reduction). To assess risks for these substances of emerging concern, the model was applied to 16 urban WWTPs located in different regions in Ireland that were scored for the three different compounds and ranked as low, medium or high risk. As a validation proxy, this case study used limited monitoring data recorded at some these plants receiving waters. It is envisaged that this semi-quantitative RA approach may aid other EU countries investigate and screen for potential risks where limited measured or predicted environmental pollutant concentrations and/or hydrological data are available. This model is semi-quantitative, as other factors such as influence of climate change and drug usage or prescription data will need to be considered in a future point for estimating and predicting risks.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas/análise , Medição de Risco , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Irlanda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA