Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 938: 173051, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740194

RESUMO

Water Distribution Networks (WDNs) are critical infrastructures that ensure a continuous supply of safe water to homes. In the face of challenges, like water scarcity, establishing resilient networks is imperative, especially in regions vulnerable to water crises. This study evaluates the resilience of network designs through graph theory, including its hydraulic feasibility using EPANET software, an aspect often overlooked. Novel mathematical algorithms, including Resilience by Design (RbD) and Resilience-strengthening (RS) algorithms, provide cost-effective and resilient network designs, even with budget constraints. A novel metric, Water Availability (WA), is introduced to offer a comprehensive measure of network resilience, thereby addressing ongoing discrepancies in resilience evaluation methods. Practical benefits are illustrated through a case study in which a resilient-by-design reclaimed water network is created, and an existing equivalent non-resilient network is improved. The resilient-by-design network demonstrates remarkably better results compared to the equivalent non-resilient design, including up to a 36 % reduction in the probability of service disruptions and a nearly 65 % decrease in the annual average unserved water due to service disruptions. These findings underscore the enormous advantages of a resilience-focused network design approach. When compared to the equivalent non-resilient design, the resilient-by-design network generated effectively safeguards up to a significant 91,700m3 of water from the impacts of water disruption events over a 50-year operational period. In addition, the resilient-by-design WDN solution incurs a subtle decrease in overall costs compared to consuming tap water from the drinking WDN baseline over a 50-year operational period. These findings highlight the cost-effectiveness of the approach, even offering financial benefits. This paper builds on our previous research by expanding its scope to include resilience considerations, providing algorithms that can be easily adapted from reclaimed to drinking WDNs. Ultimately, we contribute to the enhancement of water resource management and infrastructure planning in ever-evolving urban environments.

2.
Chemosphere ; 317: 137850, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657572

RESUMO

Relevant challenges associated with the urban water cycle must be overcome to meet the United Nations Sustainable Development Goals (SDGs) and improve resilience. Unlike previous studies that focused only on the provision of drinking water, we propose a framework that extends the use of the theory of nudges to all stages of the overall urban water cycle (drinking water and wastewater services), and to agents of influence (citizens, organizations, and governments) at different levels of decision making. The framework integrates four main drivers (the fourth water revolution, digitalization, decentralization, and climate change), which influence how customers, water utilities and regulators approach the challenges posed by the urban water cycle. The proposed framework, based on the theory of nudges first advanced by the Nobel Prize in behavioral economics Richard H. Thaler and Cass R. Sunstein (Thaler and Sunstein, 2009), serves as a reference for policymakers to define medium- and long-term strategies and policies for improving the sustainability and resilience of the urban water cycle. Finally, we provide new insights for further research on resilience approaches to the management of the urban water cycle as an element to support the more efficient formulation of policies.


Assuntos
Água Potável , Ciclo Hidrológico , Desenvolvimento Sustentável
3.
Water Res ; 143: 632-641, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031299

RESUMO

Investments for upgrading wastewater treatment plants (WWTPs) with tertiary treatment to reduce microcontaminant loads in surface waters at a catchment scale can be daunting. These investments are highly sensitive to the selection of environmental quality standards (EQSs) for the target microcontaminants. Our hypothesis is that there is a balance between EQS selection and investment that needs to be considered in decision-making. We used a customized microcontaminant fate and transport model coupled to an optimization algorithm to validate this hypothesis in the Llobregat river basin and for the pharmaceutical compound diclofenac. The algorithm optimizes the number of WWTPs in this catchment requiring an upgrade to minimize the total amount of diclofenac that exceeds the EQS in every river section and the total cost. We simulated and optimized 40 scenarios representing a combination of 4 potential EQSs (10, 30, 50 and 100 ng L-1), 5 levels of uncertainty bounds in the predictions of river concentrations and 2 hydrological scenarios (average flows, flows annually exceeding 30% of the days; and environmental flows, flows annually exceeding 99% of the days). The results showthat there is a nonlinear relationship between the EQS and the required investment. The investment increases by 100% from an EQS of 100 ng L-1 to 10 ng L-1, significantly increasing (by 60%) from 30 to 10 ng L-1. Thus, establishing an EQS of 30 ng L-1 would balance environmental protection and costs. The selection of the hydrological conditions also plays a key role in the upgrade analysis because the costs for environmental flows are 50% higher than for average flows. Finally, we highlight that the investment in research would allow the reduction of uncertainties, hence allowing more qualified decisions to be made and a reduction in the WWTP upgrade costs (up to 4 €·household-1·year-1).


Assuntos
Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Poluição Química da Água/economia , Poluição Química da Água/prevenção & controle , Conservação dos Recursos Naturais/economia , Custos e Análise de Custo , Diclofenaco/análise , Diclofenaco/química , Hidrologia/métodos , Ozônio/química , Rios/química , Espanha , Incerteza , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Qualidade da Água
4.
J Environ Manage ; 193: 503-511, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28249760

RESUMO

Greywater is an important alternative water source, particularly in semi-arid, touristic areas, where the biggest water demand is usually in the dry period. By using this source wisely, tourist facilities can substantially reduce the pressure to scarce water resources. In densely urbanized touristic areas, where space has high value, compact solutions such as MBR based greywater reuse systems appear very appropriate. This research focuses on technical and economical evaluation of such solution by implementing a pilot MBR to a hotel with separated grey water. The pilot was operated for 6 months, with thorough characterisation of the GW performed, its operation was monitored and its energy consumption was optimized by applying a control system for the air scour. Based on the pilot operation a design and economic model was set to estimate the feasibility (CAPEX, OPEX, payback period of investment) of appropriate scales of MBR based GW systems, including separation of GW, MBR technology, clean water storage and disinfection. The model takes into account water and energy prices in Spain and a planning period of 20 years. The results demonstrated an excellent performance in terms of effluent quality, while the energy demand for air-scour was reduced by up to 35.2%, compared to the manufacturer recommendations. Economical evaluation of the entire MBR based GW reuse system shows its feasibility for sizes already at 5 m3/day (60 PE). The payback period of the investment for hotels like the demonstration hotel, treating 30 m3/day is 3 years.


Assuntos
Desinfecção , Eliminação de Resíduos Líquidos , Reatores Biológicos , Membranas Artificiais , Espanha , Purificação da Água
5.
Environ Sci Technol ; 50(23): 12548-12556, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27689808

RESUMO

This study assesses the environmental impacts of four measures proposed for upgrading of the urban wastewater system of Eindhoven and the Dommel River in The Netherlands, against the base case, "do-nothing" option. The measures aim to reduce the overall environmental impact of the Eindhoven urban wastewater system (UWS) by targeting river dissolved oxygen depletion and ammonia peaks, reducing combined sewer overflows, and enhancing nutrient removal. The measures are evaluated using a life cycle analysis with the boundaries including the receiving river section by means of an integrated model of the UWS. An uncertainty analysis of the estimated impacts has been performed to support the outcomes. The study also uses the economic concept of shadow prices to assign relative weights of socio-economic importance to the estimated life cycle impacts. This novel integration of tools complements the assessments of this UWS with the inclusion of long-term global environmental impacts and the investigation of trade-offs between different environmental impacts through a single monetary unit. The results support the selection of deeper clarifiers as the most environmentally beneficial measure for upgrade.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Estágios do Ciclo de Vida , Modelos Teóricos , Rios
6.
Water Res ; 43(18): 4527-38, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19695661

RESUMO

The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.


Assuntos
Modelos Teóricos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Algoritmos , Reatores Biológicos , Simulação por Computador , Oxigênio/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA