Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Cell Pathol (Amst) ; 2021: 2328218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692375

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a common type of cancer worldwide. Strong connections have been revealed between immune cells and the pathogenesis of HNSCC. Important differences regarding the levels of immune cell subpopulations in both peripheral circulation and tumor microenvironment were emphasized, with some of them having prognostic significance. In our study, we performed an analysis of immune changes in the tumor tissue and the peripheral blood of untreated HNSCC patients, investigating the proportions of different immune cell populations in these two compartments. The local infiltrating lymphocytes were mainly cytotoxic T cells (CD8+). We have also revealed an increased level of B lymphocytes (CD19+) in the tumor microenvironment. In peripheral blood, the most important lymphocyte subtype was represented by the helper T lymphocytes (CD4+). We also found an increased proportion of circulating NK cells (CD56+). Our results showed significant differences between all investigated lymphocyte subtypes in the peripheral blood and the tumor tissue of untreated HNSCC patients, suggesting that the local and systemic expressions of antitumor immune responses are different and that investigation of immune cell proportions in peripheral circulation has different cues that do not reflect the immune infiltrate pattern within the tumor microenvironment. Further studies are necessary to unveil the complex interplay involving local and systemic events in the immune system's fight against cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Linfócitos do Interstício Tumoral/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Microambiente Tumoral/imunologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Biomed Pharmacother ; 144: 112356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710839

RESUMO

The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos , Preparações Farmacêuticas/química , Animais , Materiais Biocompatíveis/toxicidade , Técnicas Biossensoriais , Composição de Medicamentos , Géis , Humanos , Preparações Farmacêuticas/administração & dosagem , Porosidade , Medicina Regenerativa , Medição de Risco , Propriedades de Superfície , Engenharia Tecidual , Testes de Toxicidade , Cicatrização/efeitos dos fármacos
3.
Arch Toxicol ; 93(10): 2741-2757, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520250

RESUMO

Humans are exposed to multiple chemicals on a daily basis instead of to just a single chemical, yet the majority of existing toxicity data comes from single-chemical exposure. Multiple factors must be considered such as the route, concentration, duration, and the timing of exposure when determining toxicity to the organism. The need for adequate model systems (in vivo, in vitro, in silico and mathematical) is paramount for better understanding of chemical mixture toxicity. Currently, shortcomings plague each model system as investigators struggle to find the appropriate balance of rigor, reproducibility and appropriateness in mixture toxicity studies. Significant questions exist when comparing single-to mixture-chemical toxicity concerning additivity, synergism, potentiation, or antagonism. Dose/concentration relevance is a major consideration and should be subthreshold for better accuracy in toxicity assessment. Previous work was limited by the technology and methodology of the time, but recent advances have resulted in significant progress in the study of mixture toxicology. Novel technologies have added insight to data obtained from in vivo studies for predictive toxicity testing. These include new in vitro models: omics-related tools, organs-on-a-chip and 3D cell culture, and in silico methods. Taken together, all these modern methodologies improve the understanding of the multiple toxicity pathways associated with adverse outcomes (e.g., adverse outcome pathways), thus allowing investigators to better predict risks linked to exposure to chemical mixtures. As technology and knowledge advance, our ability to harness and integrate separate streams of evidence regarding outcomes associated with chemical mixture exposure improves. As many national and international organizations are currently stressing, studies on chemical mixture toxicity are of primary importance.


Assuntos
Segurança Química/métodos , Medição de Risco/métodos , Testes de Toxicidade/métodos , Animais , Simulação por Computador , Exposição Ambiental/efeitos adversos , Humanos , Modelos Biológicos , Modelos Teóricos , Reprodutibilidade dos Testes
4.
Oncotarget ; 7(43): 69718-69732, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27626486

RESUMO

Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 µg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 µg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that "escape" the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium.


Assuntos
Índio/uso terapêutico , Indóis/uso terapêutico , Neuroblastoma/tratamento farmacológico , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Índio/efeitos adversos , Indóis/efeitos adversos , Isoindóis , Fotoquimioterapia/efeitos adversos , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA