Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Strahlenther Onkol ; 199(6): 544-553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36151215

RESUMO

PURPOSE: This study aimed to evaluate the intrafractional prostate motion captured during gated magnetic resonance imaging (MRI)-guided online adaptive radiotherapy for prostate cancer and analyze its impact on the delivered dose as well as the effect of gating. METHODS: Sagittal 2D cine-MRI scans were acquired at 4 Hz during treatment at a ViewRay MRIdian (ViewRay Inc., Oakwood Village, OH, USA) MR linac. Prostate shifts in anterior-posterior (AP) and superior-inferior (SI) directions were extracted separately. Using the static dose cloud approximation, the planned fractional dose was shifted according to the 2D gated motion (residual motion in gating window) to estimate the delivered dose by superimposing and averaging the shifted dose volumes. The dose of a hypothetical non-gated delivery was reconstructed similarly using the non-gated motion. For the clinical target volume (CTV), rectum, and bladder, dose-volume histogram parameters of the planned and reconstructed doses were compared. RESULTS: In total, 174 fractions (15.7 h of cine-MRI) from 10 patients were evaluated. The average (±1 σ) non-gated prostate motion was 0.6 ± 1.0 mm in the AP and 0.0 ± 0.6 mm in the SI direction with respect to the centroid position of the gating boundary. 95% of the shifts were within [-3.5, 2.7] mm in the AP and [-2.9, 3.2] mm in the SI direction. For the gated treatment and averaged over all fractions, CTV D98% decreased by less than 2% for all patients. The rectum and the bladder D2% increased by less than 3% and 0.5%, respectively. Doses reconstructed for gated and non-gated delivery were similar for most fractions. CONCLUSION: A pipeline for extraction of prostate motion during gated MRI-guided radiotherapy based on 2D cine-MRI was implemented. The 2D motion data enabled an approximate estimation of the delivered dose. For the majority of fractions, the benefit of gating was negligible, and clinical dosimetric constraints were met, indicating safety of the currently adopted gated MRI-guided treatment workflow.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Movimento (Física) , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
2.
Front Oncol ; 11: 667993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211842

RESUMO

BACKGROUND: In certain malignancies, patients with oligometastatic disease benefit from radical ablative or surgical treatment. The SABR-COMET trial demonstrated a survival benefit for oligometastatic patients randomized to local stereotactic ablative radiation (SABR) compared to patients receiving standard care (SC) alone. Our aim was to determine the cost-effectiveness of SABR. MATERIALS AND METHODS: A decision model based on partitioned survival simulations estimated costs and quality-adjusted life years (QALY) associated with both strategies in a United States setting from a health care perspective. Analyses were performed over the trial duration of six years as well as a long-term horizon of 16 years. Model input parameters were based on the SABR-COMET trial data as well as best available and most recent data provided in the published literature. An annual discount of 3% for costs was implemented in the analysis. All costs were adjusted to 2019 US Dollars according to the United States Consumer Price Index. SABR costs were reported with an average of $11,700 per treatment. Deterministic and probabilistic sensitivity analyses were performed. Incremental costs, effectiveness, and cost-effectiveness ratios (ICER) were calculated. The willingness-to-pay (WTP) threshold was set to $100,000/QALY. RESULTS: Based on increased overall and progression-free survival, the SABR group showed 0.78 incremental QALYs over the trial duration and 1.34 incremental QALYs over the long-term analysis. Treatment with SABR led to a marginal increase in costs compared to SC alone (SABR: $304,656; SC: $303,523 for 6 years; ICER $1,446/QALY and SABR: $402,888; SC: $350,708 for long-term analysis; ICER $38,874/QALY). Therapy with SABR remained cost-effective until treatment costs of $88,969 over the trial duration (i.e. 7.6 times the average cost). Sensitivity analysis identified a strong model impact for ongoing annual costs of oligo- and polymetastatic disease states. CONCLUSION: Our analysis suggests that local treatment with SABR adds QALYs for patients with certain oligometastatic cancers and represents an intermediate- and long-term cost-effective treatment strategy.

3.
Brachytherapy ; 20(4): 936-947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34001415

RESUMO

PURPOSE: To validate the collapsed cone (CC) algorithm against Monte Carlo (MC) simulations for model-based dose calculations in high-dose-rate (HDR) liver brachytherapy. METHODS AND MATERIALS: Doses for liver brachytherapy treatment plans of 10 cases were retrospectively recalculated with a model-based approach using Monte Carlo n-Particle Code (MCNP) 6 (Dm,m-MC) and Oncentra Brachy ACE (Dm,m-ACE). Tissue segmentation consisted of assigning uniform compositions and mass densities to predefined Hounsfield Unit (HU) thresholds. Resulting doses were compared according to dose volume histogram parameters typical for clinical routine. These included the percentage liver volume receiving 5 Gy (V5Gy) or 10 Gy (V10Gy), the maximum dose to one cubic centimeter (D1cc) of organs at risk, the clinical target volume (CTV) fractions receiving 150% (V150), 100% (V100), 95% (V95) and 90% (V90) of the prescribed dose and the absolute doses to 95% (D95) and 90% (D90) of the CTV volumes. RESULTS: Doses from Oncentra Brachy ACE agreed well with MC simulations. Differences were seen far from the source, in low-density regions and bone structures. Median percentage deviations were 1.1% for the liver V5Gy and 0.4% for the liver V10Gy, with deviations of largest magnitude amounting to 2.2% and 1.0%, respectively. Organs at risk had median deviations ranging from 0.3% to 1.5% for D1cc, with outliers ranging up to 4.6%. CTV volume parameter deviations ranged between -1.5% and 0.5%, dose parameter deviations ranged mostly between -2% and 1%, with two outliers at -4.0% and -3.4% for a small CTV.


Assuntos
Braquiterapia , Algoritmos , Braquiterapia/métodos , Humanos , Fígado/diagnóstico por imagem , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
4.
Strahlenther Onkol ; 196(12): 1068-1079, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32914236

RESUMO

PURPOSE: COVID-19 infection has manifested as a major threat to both patients and healthcare providers around the world. Radiation oncology institutions (ROI) deliver a major component of cancer treatment, with protocols that might span over several weeks, with the result of increasing susceptibility to COVID-19 infection and presenting with a more severe clinical course when compared with the general population. The aim of this manuscript is to investigate the impact of ROI protocols and performance on daily practice in the high-risk cancer patients during this pandemic. METHODS: We addressed the incidence of positive COVID-19 cases in both patients and health care workers (HCW), in addition to the protective measures adopted in ROIs in Germany, Austria and Switzerland using a specific questionnaire. RESULTS: The results of the questionnaire showed that a noteworthy number of ROIs were able to complete treatment in SARS-CoV­2 positive cancer patients, with only a short interruption. The ROIs reported a significant decrease in patient volume that was not impacted by the circumambient disease incidence, the type of ROI or the occurrence of positive cases. Of the ROIs 16.5% also reported infected HCWs. About half of the ROIs (50.5%) adopted a screening program for patients whereas only 23.3% also screened their HCWs. The range of protective measures included the creation of working groups, instituting home office work and protection with face masks. Regarding the therapeutic options offered, curative procedures were performed with either unchanged or moderately decreased schedules, whereas palliative or benign radiotherapy procedures were more often shortened. Most ROIs postponed or cancelled radiation treatment for benign indications (88.1%). The occurrence of SARS-CoV­2 infections did not affect the treatment options for curative procedures. Non-university-based ROIs seemed to be more willing to change their treatment options for curative and palliative cases than university-based ROIs. CONCLUSION: Most ROIs reported a deep impact of SARS-CoV­2 infections on their work routine. Modification and prioritization of treatment regimens and the application of protective measures preserved a well-functioning radiation oncology service and patient care.


Assuntos
COVID-19/prevenção & controle , Infecção Hospitalar/prevenção & controle , Controle de Infecções/métodos , Neoplasias/radioterapia , Pandemias , Recursos Humanos em Hospital/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Agendamento de Consultas , Áustria/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19/estatística & dados numéricos , Institutos de Câncer/estatística & dados numéricos , Comorbidade , Infecção Hospitalar/epidemiologia , Estudos Transversais , Alemanha/epidemiologia , Hospitais Comunitários , Hospitais Universitários/estatística & dados numéricos , Humanos , Incidência , Controle de Infecções/organização & administração , Máscaras/estatística & dados numéricos , Máscaras/provisão & distribuição , Neoplasias/epidemiologia , Cuidados Paliativos/estatística & dados numéricos , Utilização de Procedimentos e Técnicas , Risco , Inquéritos e Questionários , Suíça/epidemiologia , Telemedicina/estatística & dados numéricos , Teletrabalho/estatística & dados numéricos
5.
Radiat Oncol ; 15(1): 60, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32151255

RESUMO

PURPOSE: To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. METHODS: We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V5Gy and V10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D1cc). Target coverage was assessed by calculating V150, V100, V95 and V90 as well as D95 and D90. For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. RESULTS: TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. CONCLUSIONS: In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.


Assuntos
Algoritmos , Braquiterapia , Carcinoma Hepatocelular/radioterapia , Neoplasias Colorretais/radioterapia , Neoplasias Hepáticas/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Masculino , Modelos Estatísticos , Método de Monte Carlo , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
6.
Med Phys ; 46(7): 3268-3277, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31074510

RESUMO

PURPOSE: The need for four-dimensional (4D) treatment planning becomes indispensable when it comes to radiation therapy for moving tumors in the thoracic and abdominal regions. The primary purpose of this study is to combine the actual breathing trace during each individual treatment fraction with the Linac's log file information and Monte Carlo 4D dose calculations. We investigated this workflow on multiple computed tomography (CT) datasets in a clinical environment for stereotactic body radiation therapy (SBRT) treatment planning. METHODS: We have developed a workflow, which allows us to recalculate absorbed dose to a 4DCT dataset using Monte Carlo calculation methods and accumulate all 4D doses in order to compare them to the planned dose using the Linac's log file, a 4DCT dataset, and the patient's actual breathing curve for each individual fraction. For five lung patients, three-dimensional-conformal radiation therapy (3D-CRT) and volumetric modulated arc treatment (VMAT) treatment plans were generated on four different CT image datasets: a native free-breathing 3DCT, an average intensity projection (AIP) and a maximum intensity projection (MIP) CT both obtained from a 4DCT, and a 3DCT with density overrides based on the 3DCT (DO). The Monte Carlo 4D dose has been calculated on each 4DCT phase using the Linac's log file and the patient's breathing trace as a surrogate for tumor motion and dose was accumulated to the gross tumor volume (GTV) at the 50% breathing phase (end of exhale) using deformable image registration. RESULTS: Δ D 98 % and Δ D 2 % between 4D dose and planned dose differed largely for 3DCT-based planning and also for DO in three patients. Least dose differences between planned and recalculated dose have been found for AIP and MIP treatment planning which both tend to be superior to DO, but the results indicate a dependency on the breathing variability, tumor motion, and size. An interplay effect has not been observed in the small patient cohort. CONCLUSIONS: We have developed a workflow which, to our best knowledge, is the first incorporation of the patient breathing trace over the course of all individual treatment fractions with the Linac's log file information and 4D Monte Carlo recalculations of the actual treated dose. Due to the small patient cohort, no clear recommendation on which CT can be used for SBRT treatment planning can be given, but the developed workflow, after adaption for clinical use, could be used to enhance a priori 4D Monte Carlo treatment planning in the future and help with the decision on which CT dataset treatment planning should be carried out.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Doses de Radiação , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Adulto , Idoso , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA