Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EJNMMI Phys ; 11(1): 38, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647987

RESUMO

BACKGROUND: In order to ensure adequate radiation protection of critical groups such as staff, caregivers and the general public coming into proximity of nuclear medicine (NM) patients, it is necessary to consider the impact of the radiation emitted by the patients during their stay at the hospital or after leaving the hospital. Current risk assessments are based on ambient dose rate measurements in a single position at a specified distance from the patient and carried out at several time points after administration of the radiopharmaceutical to estimate the whole-body retention. The limitations of such an approach are addressed in this study by developing and validating a more advanced computational dosimetry approach using Monte Carlo (MC) simulations in combination with flexible and realistic computational phantoms and time activity distribution curves from reference biokinetic models. RESULTS: Measurements of the ambient dose rate equivalent H*(10) at 1 m from the NM patient have been successfully compared against MC simulations with 5 different codes using the ICRP adult reference computational voxel phantoms, for typical clinical procedures with 99mTc-HDP/MDP, 18FDG and Na131I. All measurement data fall in the 95% confidence intervals, determined for the average simulated results. Moreover, the different MC codes (MCNP-X, PHITS, GATE, GEANT4, TRIPOLI-4®) have been compared for a more realistic scenario where the effective dose rate E of an exposed individual was determined in positions facing and aside the patient model at 30 cm, 50 cm and 100 cm. The variation between codes was lower than 8% for all the radiopharmaceuticals at 1 m, and varied from 5 to 16% for the face-to face and side-by-side configuration at 30 cm and 50 cm. A sensitivity study on the influence of patient model morphology demonstrated that the relative standard deviation of H*(10) at 1 m for the range of included patient models remained under 16% for time points up to 120 min post administration. CONCLUSIONS: The validated computational approach will be further used for the evaluation of effective dose rates per unit administered activity for a variety of close-contact configurations and a range of radiopharmaceuticals as part of risk assessment studies. Together with the choice of appropriate dose constraints this would facilitate the setting of release criteria and patient restrictions.

2.
EJNMMI Phys ; 9(1): 13, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195790

RESUMO

BACKGROUND: In order to acquire accurate drug pharmacokinetic information, which is required for tissue dosimetry, micro-SPECT must be quantitative to allow for an accurate assessment of radioligand activity in the relevant tissue. This study investigates the feasibility of deriving accurate mouse-specific time-integrated drug pharmacokinetic data in mouse kidneys from activity measurements using micro-SPECT. METHODS: An animal experiment was carried out to evaluate the accuracy of 131I activity quantification in mouse kidneys (mean tissue volume of 0.140 mL) using a micro-SPECT system against conventional ex vivo gamma counting (GC) in a NaI(Tl) detector. The imaging setting investigated was that of the mouse biodistribution of a 131I-labelled single-domain antibody fragment (sdAb), currently being investigated for targeted radionuclide therapy of HER2-expressing cancer. SPECT imaging of 131I 365-keV photons was done with a VECTor/CT system (MILabs, Netherlands) using a high-energy mouse collimator with 1.6-mm-diameter pinholes. For both activity quantification techniques, the pharmacokinetic profile of the radioligand from approximately 1-73 h p.i. was derived and the time-integrated activity coefficient per gram of tissue (ã/M) was estimated. Additionally, SPECT activity recovery coefficients were determined in a phantom setting. RESULTS: SPECT activities underestimate the reference activities by an amount that is dependent on the 131I activity concentration in the kidney, and thus on the time point of the pharmacokinetic profile. This underestimation is around - 12% at 1.5 h (2.89 MBq mL-1 mean reference activity concentration), - 13% at 6.6 h (149 kBq mL-1), - 40% at 24 h (17.6 kBq mL-1) and - 46% at 73 h (5.2 kBq mL-1) p.i. The ã/M value estimated from SPECT activities is, nevertheless, within - 14% from the reference (GC) ã/M value. Furthermore, better quantitative accuracy (within 2% from GC) in the SPECT ã/M value is achieved when SPECT activities are compensated for partial recovery with a phantom-based recovery coefficient of 0.85. CONCLUSION: The SPECT imaging system used, together with a robust activity quantification methodology, allows an accurate estimation of time-integrated pharmacokinetic information of the 131I-labelled sdAb in mouse kidneys. This opens the possibility to perform mouse-specific kidney-tissue dosimetry based on pharmacokinetic data acquired in vivo on the same mice used in nephrotoxicity studies.

3.
Radiat Prot Dosimetry ; 182(2): 177-183, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29584902

RESUMO

Hospital based workers that perform interventional radiology are at risk of reaching the eye lens dose limit of 20 mSv/y. These workers are exposed to the radiation scattered by the patient, which creates a complex field, with low radiation energy reaching the eyes of the medical staff from wide angles. Therefore, the dosemeter used in the assessment of the eye lens dose of interventional radiologists needs to respond accurately in such conditions. In this study, the angular response of a commercially available radiophotoluminescent glass dosemeter, GD-352M, was optimized via Monte Carlo simulations, aiming at its use as eye lens dosemeter in interventional radiology. The improved dosemeter was manufactured and then characterized in terms of Hp(3), the quantity recommended for eye lens dosimetry. Its response was compared to the IEC 62387:2012 requirements for Hp(3) and to requirements proposed specifically for eye lens dosemeters used in interventional radiology. The improved dosemeter meets the IEC 62387:2012 requirements for energy and angular response for Hp(3) and also shows good agreement with the more strict requisites proposed for eye lens dosemeters to be used in interventional radiology.


Assuntos
Cardiologia , Cristalino/efeitos da radiação , Exposição Ocupacional/análise , Dosímetros de Radiação , Monitoramento de Radiação/instrumentação , Radiologia Intervencionista , Calibragem , Vidro , Humanos , Método de Monte Carlo
4.
EuroIntervention ; 13(15): e1778-e1784, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29039310

RESUMO

AIMS: This study aimed to evaluate the effectiveness of ceiling suspended screens, lead glasses and lead caps in reducing radiation doses to the brains of interventional cardiologists. METHODS AND RESULTS: Interventional procedures where the thorax of the patient is irradiated with different beam projections were modelled. The dose reduction in the white matter and hippocampus of the Zubal head phantom was studied for two sizes of ceiling suspended screens, two types of lead glasses and lead caps of surgical and hood models, which cover different regions of the head. Ceiling screens were the most effective, reducing the dose to brain tissue by 74% or even as much as 94%. The dose reduction provided by lead glasses varies between 10% and 17%. For the lead caps, it strongly depends on the model, varying from 6% (surgical) up to 68% (hood that also covered lower parts of the head). CONCLUSIONS: The dose to the brain can be reduced by using appropriate radiation protection devices. This study has shown that lead caps are less protective than previously described and that the best protection is given by ceiling suspended screens, which are widely available in interventional theatres.


Assuntos
Encéfalo/efeitos da radiação , Cardiologistas , Dispositivos de Proteção dos Olhos , Dispositivos de Proteção da Cabeça , Saúde Ocupacional , Doses de Radiação , Exposição à Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Radiografia Intervencionista , Radiologistas , Encéfalo/anatomia & histologia , Simulação por Computador , Desenho de Equipamento , Humanos , Chumbo , Modelos Anatômicos , Método de Monte Carlo , Exposição à Radiação/efeitos adversos , Monitoramento de Radiação/métodos , Radiografia Intervencionista/efeitos adversos , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA