Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(21): 12445-12455, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30277062

RESUMO

Australia has relatively diverse sources and low concentrations of ambient fine particulate matter (<2.5 µm, PM2.5). Few comparable regions are available to evaluate the utility of continental-scale land-use regression (LUR) models including global geophysical estimates of PM2.5, derived by relating satellite-observed aerosol optical depth to ground-level PM2.5 ("SAT-PM2.5"). We aimed to determine the validity of such satellite-based LUR models for PM2.5 in Australia. We used global SAT-PM2.5 estimates (∼10 km grid) and local land-use predictors to develop four LUR models for year-2015 (two satellite-based, two nonsatellite-based). We evaluated model performance at 51 independent monitoring sites not used for model development. An LUR model that included the SAT-PM2.5 predictor variable (and six others) explained the most spatial variability in PM2.5 (adjusted R2 = 0.63, RMSE (µg/m3 [%]): 0.96 [14%]). Performance decreased modestly when evaluated (evaluation R2 = 0.52, RMSE: 1.15 [16%]). The evaluation R2 of the SAT-PM2.5 estimate alone was 0.26 (RMSE: 3.97 [56%]). SAT-PM2.5 estimates improved LUR model performance, while local land-use predictors increased the utility of global SAT-PM2.5 estimates, including enhanced characterization of within-city gradients. Our findings support the validity of continental-scale satellite-based LUR modeling for PM2.5 exposure assessment in Australia.


Assuntos
Poluentes Atmosféricos , Austrália , Cidades , Monitoramento Ambiental , Material Particulado
2.
Environ Health ; 15: 58, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117232

RESUMO

BACKGROUND: Planning and transport agencies play a vital role in influencing the design of townscapes, travel modes and travel behaviors, which in turn impact on the walkability of neighbourhoods and residents' physical activity opportunities. Optimising neighbourhood walkability is desirable in built environments, however, the population health benefits of walkability may be offset by increased exposure to traffic related air pollution. This paper describes the spatial distribution of neighbourhood walkability and weighted road density, a marker for traffic related air pollution, in Sydney, Australia. As exposure to air pollution is related to socio-economic status in some cities, this paper also examines the spatial distribution of weighted road density and walkability by socio-economic status (SES). METHODS: We calculated walkability, weighted road density (as a measure of traffic related air pollution) and SES, using predefined and validated measures, for 5858 Sydney neighbourhoods, representing 3.6 million population. We overlaid tertiles of walkability and weighted road density to define "sweet-spots" (high walkability-low weighted road density), and "sour- spots" (low walkability-high weighted road density) neighbourhoods. We also examined the distribution of walkability and weighted road density by SES quintiles. RESULTS: Walkability and weighted road density showed a clear east-west gradient across the region. Our study found that only 4 % of Sydney's population lived in sweet-spot" neighbourhoods with high walkability and low weighted road density (desirable), and these tended to be located closer to the city centre. A greater proportion of neighbourhoods had health limiting attributes of high weighted road density or low walkability (about 20 % each), and over 5 % of the population lived in "sour-spot" neighbourhoods with low walkability and high weighted road density (least desirable). These neighbourhoods were more distant from the city centre and scattered more widely. There were no linear trends between walkability/weighted road density and neighbourhood SES. CONCLUSIONS: Our walkability and weighted road density maps and associated analyses by SES can help identify neighbourhoods with inequalities in health-promoting or health-limiting environments. Planning agencies should seek out opportunities for increased neighbourhood walkability through improved urban development and transport planning, which simultaneously minimizes exposure to traffic related air pollution.


Assuntos
Características de Residência , Saúde da População Urbana , Caminhada , Poluentes Atmosféricos/análise , Austrália , Cidades , Humanos , Veículos Automotores , Dióxido de Nitrogênio/análise , Classe Social , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA