Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Exp Physiol ; 109(8): 1274-1291, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923603

RESUMO

We evaluated the impacts of COVID-19 on multi-organ and metabolic function in patients following severe hospitalised infection compared to controls. Patients (n = 21) without previous diabetes, cardiovascular or cerebrovascular disease were recruited 5-7 months post-discharge alongside controls (n = 10) with similar age, sex and body mass. Perceived fatigue was estimated (Fatigue Severity Scale) and the following were conducted: oral glucose tolerance (OGTT) alongside whole-body fuel oxidation, validated magnetic resonance imaging and spectroscopy during resting and supine controlled exercise, dual-energy X-ray absorptiometry, short physical performance battery (SPPB), intra-muscular electromyography, quadriceps strength and fatigability, and daily step-count. There was a greater insulin response (incremental area under the curve, median (inter-quartile range)) during the OGTT in patients [18,289 (12,497-27,448) mIU/min/L] versus controls [8655 (7948-11,040) mIU/min/L], P < 0.001. Blood glucose response and fasting and post-prandial fuel oxidation rates were not different. This greater insulin resistance was not explained by differences in systemic inflammation or whole-body/regional adiposity, but step-count (P = 0.07) and SPPB scores (P = 0.004) were lower in patients. Liver volume was 28% greater in patients than controls, and fat fraction adjusted liver T1, a measure of inflammation, was raised in patients. Patients displayed greater perceived fatigue scores, though leg muscle volume, strength, force-loss, motor unit properties and post-exercise muscle phosphocreatine resynthesis were comparable. Further, cardiac and cerebral architecture and function (at rest and on exercise) were not different. In this cross-sectional study, individuals without known previous morbidity who survived severe COVID-19 exhibited greater insulin resistance, pointing to a need for physical function intervention in recovery.


Assuntos
COVID-19 , Resistência à Insulina , Humanos , COVID-19/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Resistência à Insulina/fisiologia , SARS-CoV-2 , Glicemia/metabolismo , Fadiga/fisiopatologia , Teste de Tolerância a Glucose , Adulto , Força Muscular/fisiologia , Idoso , Músculo Esquelético/fisiopatologia , Músculo Esquelético/metabolismo
2.
Clin Kidney J ; 14(8): 1969-1976, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345421

RESUMO

BACKGROUND: Acute kidney injury (AKI) is associated with a marked increase in mortality as well as subsequent chronic kidney disease (CKD) and end-stage kidney disease. We performed multiparametric magnetic resonance imaging (MRI) with the aim of identifying potential non-invasive MRI markers of renal pathophysiology in AKI and during recovery. METHODS: Nine participants underwent inpatient MRI scans at time of AKI; seven had follow-up scans at 3 months and 1 year following AKI. Multiparametric renal MRI assessed total kidney volume (TKV), renal perfusion using arterial spin labelling, T1 mapping and blood oxygen level-dependent (BOLD) R2* mapping. RESULTS: Serum creatinine concentration had recovered to baseline levels at 1-year post-AKI in all participants. At the time of AKI, participants had increased TKV, increased cortex/medulla T1 and reduced cortical perfusion compared with the expected ranges in healthy volunteers and people with CKD. TKV and T1 values decreased over time after AKI and returned to expected values in most but not all patients by 1 year. Cortical perfusion improved to a lesser extent and remained below the expected range in the majority of patients by 1-year post-AKI. BOLD R2* data showed a non-significant trend to increase over time post-AKI. CONCLUSIONS: We observed a substantial increase in TKV and T1 during AKI and a marked decrease in cortical perfusion. Despite biochemical recovery at 1-year post-AKI, MRI measures indicated persisting abnormalities in some patients. We propose that such patients may be more likely to have further AKI episodes or progress to CKD and further longitudinal studies are required to investigate this. .

3.
Nephrol Dial Transplant ; 35(6): 955-964, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257440

RESUMO

BACKGROUND: Multi-parametric magnetic resonance imaging (MRI) provides the potential for a more comprehensive non-invasive assessment of organ structure and function than individual MRI measures, but has not previously been comprehensively evaluated in chronic kidney disease (CKD). METHODS: We performed multi-parametric renal MRI in persons with CKD (n = 22, 61 ± 24 years) who had a renal biopsy and measured glomerular filtration rate (mGFR), and matched healthy volunteers (HV) (n = 22, 61 ± 25 years). Longitudinal relaxation time (T1), diffusion-weighted imaging, renal blood flow (phase contrast MRI), cortical perfusion (arterial spin labelling) and blood-oxygen-level-dependent relaxation rate (R2*) were evaluated. RESULTS: MRI evidenced excellent reproducibility in CKD (coefficient of variation <10%). Significant differences between CKD and HVs included cortical and corticomedullary difference (CMD) in T1, cortical and medullary apparent diffusion coefficient (ADC), renal artery blood flow and cortical perfusion. MRI measures correlated with kidney function in a combined CKD and HV analysis: estimated GFR correlated with cortical T1 (r = -0.68), T1 CMD (r = -0.62), cortical (r = 0.54) and medullary ADC (r = 0.49), renal artery flow (r = 0.78) and cortical perfusion (r = 0.81); log urine protein to creatinine ratio (UPCR) correlated with cortical T1 (r = 0.61), T1 CMD (r = 0.61), cortical (r = -0.45) and medullary ADC (r = -0.49), renal artery flow (r = -0.72) and cortical perfusion (r = -0.58). MRI measures (cortical T1 and ADC, T1 and ADC CMD, cortical perfusion) differed between low/high interstitial fibrosis groups at 30-40% fibrosis threshold. CONCLUSION: Comprehensive multi-parametric MRI is reproducible and correlates well with available measures of renal function and pathology. Larger longitudinal studies are warranted to evaluate its potential to stratify prognosis and response to therapy in CKD.


Assuntos
Testes de Função Renal/métodos , Rim/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Circulação Renal , Insuficiência Renal Crônica/patologia , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/metabolismo , Reprodutibilidade dos Testes
4.
Am J Physiol Renal Physiol ; 316(4): F693-F702, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648907

RESUMO

Noninvasive methods of magnetic resonance imaging (MRI) can quantify parameters of kidney function. The main purpose of this study was to determine baseline values of such parameters in healthy volunteers. In 28 healthy volunteers (15 women and 13 men), arterial spin labeling to estimate regional renal perfusion, blood oxygen level-dependent transverse relaxation rate (R2*) to estimate oxygenation, and apparent diffusion coefficient (ADC), true diffusion (D), and longitudinal relaxation time (T1) to estimate tissue properties were determined bilaterally in the cortex and outer and inner medulla. Additionally, phase-contrast MRI was applied in the renal arteries to quantify total renal blood flow. The results demonstrated profound gradients of perfusion, ADC, and D with highest values in the kidney cortex and a decrease towards the inner medulla. R2* and T1 were lowest in kidney cortex and increased towards the inner medulla. Total renal blood flow correlated with body surface area, body mass index, and renal volume. Similar patterns in all investigated parameters were observed in women and men. In conclusion, noninvasive MRI provides useful tools to evaluate intrarenal differences in blood flow, perfusion, diffusion, oxygenation, and structural properties of the kidney tissue. As such, this experimental approach has the potential to advance our present understanding regarding normal physiology and the pathological processes associated with acute and chronic kidney disease.


Assuntos
Rim/diagnóstico por imagem , Rim/fisiologia , Adulto , Índice de Massa Corporal , Superfície Corporal , Água Corporal/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Rim/anatomia & histologia , Córtex Renal/metabolismo , Medula Renal/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Circulação Renal , Adulto Jovem
5.
J Hepatol ; 69(5): 1015-1024, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29886155

RESUMO

BACKGROUND & AIMS: Advancing liver disease results in deleterious changes in a number of critical organs. The ability to measure structure, blood flow and tissue perfusion within multiple organs in a single scan has implications for determining the balance of benefit vs. harm for therapies. Our aim was to establish the feasibility of magnetic resonance imaging (MRI) to assess changes in Compensated Cirrhosis (CC), and relate this to disease severity and future liver-related outcomes (LROs). METHODS: A total of 60 patients with CC, 40 healthy volunteers and 7 patients with decompensated cirrhosis were recruited. In a single scan session, MRI measures comprised phase-contrast MRI vessel blood flow, arterial spin labelling tissue perfusion, T1 longitudinal relaxation time, heart rate, cardiac index, and volume assessment of the liver, spleen and kidneys. We explored the association between MRI parameters and disease severity, analysing differences in baseline MRI parameters in the 11 (18%) patients with CC who experienced future LROs. RESULTS: In the liver, compositional changes were reflected by increased T1 in progressive disease (p <0.001) and an increase in liver volume in CC (p = 0.006), with associated progressive reduction in liver (p <0.001) and splenic (p <0.001) perfusion. A significant reduction in renal cortex T1 and increase in cardiac index and superior mesenteric arterial blood flow was seen with increasing disease severity. Baseline liver T1 (p = 0.01), liver perfusion (p <0.01), and renal cortex T1 (p <0.01) were significantly different in patients with CC who subsequently developed negative LROs. CONCLUSIONS: MRI enables the contemporaneous assessment of organs in liver cirrhosis in a single scan without the requirement for a contrast agent. MRI parameters of liver T1, renal T1, hepatic and splenic perfusion, and superior mesenteric arterial blood flow were related to the risk of LROs. LAY SUMMARY: This study assesses the changes to structure, blood flow and perfusion that occur in the key organs (liver, spleen and kidney) associated with severe liver disease (Compensated Cirrhosis), using magnetic resonance imaging. The magnetic resonance imaging measures which changed with disease severity and were related to negative liver-related clinical outcomes are described.


Assuntos
Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idoso , Feminino , Humanos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional , Índice de Gravidade de Doença , Baço/diagnóstico por imagem
6.
J Hepatol ; 65(6): 1131-1139, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27475617

RESUMO

BACKGROUND & AIMS: Hepatic venous pressure gradient (HVPG) measurement is currently the only validated technique to accurately evaluate changes in portal pressure. In this study, we evaluate the use of non-contrast quantitative magnetic resonance imaging (MRI) as a surrogate measure of portal pressure. METHODS: Thirty patients undergoing HVPG measurement were prospectively recruited. MR parameters of longitudinal relaxation time (T1), perfusion of the liver and spleen (by arterial spin labelling), and blood flow in the portal, splanchnic and collateral circulation (by phase contrast MRI) were assessed. We estimated the liver stiffness measurement (LSM) and enhanced liver fibrosis (ELF) score. The correlation of all non-invasive parameters with HVPG was evaluated. RESULTS: The mean (range) HVPG of the patients was 9.8 (1-22) mmHg, and 14 patients (48%) had clinically significant portal hypertension (CSPH, HVPG ⩾10mmHg). Liver T1 relaxation time, splenic artery and superior mesenteric artery velocity correlated significantly with HVPG. Using multiple linear regression, liver T1 and splenic artery velocity remained as the two parameters in the multivariate model significantly associated with HVPG (R=0.90, p<0.001). This correlation was maintained in patients with CSPH (R=0.85, p<0.001). A validation cohort (n=10) showed this linear model provided a good prediction of HVPG. LSM and ELF score correlated significantly with HVPG in the whole population but the correlation was absent in CSPH. CONCLUSIONS: MR parameters related to both hepatic architecture and splanchnic haemodynamics correlate significantly with HVPG. This proposed model, confirmed in a validation cohort, could replace the invasive HVPG measurement. LAY SUMMARY: In patients with cirrhosis, the development and progression of portal hypertension is related to worse outcomes. However, the standard technique of assessing portal pressure is invasive and not widely used in clinical practice. Here, we have studied the use of non-invasive MRI in evaluating portal pressure. The MRI measures of liver architecture and blood flow in the splenic artery correlated well with portal pressure. Therefore, this non-invasive method can potentially be used to assess portal pressure in clinical trials and monitoring treatment in practice.


Assuntos
Hipertensão Portal , Humanos , Cirrose Hepática , Imageamento por Ressonância Magnética , Pressão na Veia Porta
7.
J Magn Reson Imaging ; 42(5): 1233-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25787269

RESUMO

PURPOSE: To dynamically quantify pancreatic perfusion and flow within the arteries supplying the pancreas in response to secretin stimulation. MATERIALS AND METHODS: Twelve healthy male subjects were scanned at 1.5T with arterial spin labeling to measure tissue perfusion and phase contrast magnetic resonance imaging (MRI) to measure vessel flow. Superior mesenteric (SMA), gastroduodenal (GDA), common hepatic (HA), and splenic (SA) arterial flow and pancreatic perfusion were serially measured for 50 minutes following 1 IU/kg intravenous secretin. The significance of differences between timepoints was tested using a repeated measures one-way analysis of variance (ANOVA). RESULTS: Baseline blood flow (mean ± SEM or median [IQR]) for SMA, HA, SA, and GDA was 7.6 ± 1.3, 4.0 ± 0.5, 8.2 ± 0.8, and 0.9 (0.8-1.4) ml/s, respectively. Baseline pancreatic perfusion was 200 ± 25 ml/100g/min. Blood flow increased in the SMA (234%, P < 0.0001) and GDA (155%, P = 0.015) immediately after secretin injection. Reduced HA blood flow was observed after 10 minutes (P = 0.066) with no change in SA flow (P = 0.533). Increased pancreatic perfusion was maintained for 40 minutes after injection with a maximal increase at 5 minutes (16.8%, P = 0.025). CONCLUSION: Intravenous secretin resulted in significant temporal changes in pancreatic perfusion and arterial blood flow.


Assuntos
Imageamento por Ressonância Magnética , Pâncreas/irrigação sanguínea , Secretina/administração & dosagem , Adulto , Análise de Variância , Meios de Contraste , Fármacos Gastrointestinais/administração & dosagem , Humanos , Aumento da Imagem , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Marcadores de Spin , Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA