Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Cell Dev Biol ; 11: 1112270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819107

RESUMO

Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.

2.
Hum Mutat ; 43(12): 2234-2250, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259723

RESUMO

Macular degenerations (MDs) are a subgroup of retinal disorders characterized by central vision loss. Knowledge is still lacking on the extent of genetic and nongenetic factors influencing inherited MD (iMD) and age-related MD (AMD) expression. Single molecule Molecular Inversion Probes (smMIPs) have proven effective in sequencing the ABCA4 gene in patients with Stargardt disease to identify associated coding and noncoding variation, however many MD patients still remain genetically unexplained. We hypothesized that the missing heritability of MDs may be revealed by smMIPs-based sequencing of all MD-associated genes and risk factors. Using 17,394 smMIPs, we sequenced the coding regions of 105 iMD and AMD-associated genes and noncoding or regulatory loci, known pseudo-exons, and the mitochondrial genome in two test cohorts that were previously screened for variants in ABCA4. Following detailed sequencing analysis of 110 probands, a diagnostic yield of 38% was observed. This established an ''MD-smMIPs panel," enabling a genotype-first approach in a high-throughput and cost-effective manner, whilst achieving uniform and high coverage across targets. Further analysis will identify known and novel variants in MD-associated genes to offer an accurate clinical diagnosis to patients. Furthermore, this will reveal new genetic associations for MD and potential genetic overlaps between iMD and AMD.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Degeneração Macular , Humanos , Análise Custo-Benefício , Doença de Stargardt/genética , Éxons , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/genética
3.
Hum Mutat ; 42(12): 1521-1547, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411390

RESUMO

Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.


Assuntos
Periferinas/genética , Doenças Retinianas , Estudos de Associação Genética , Humanos , Mutação , Mutação de Sentido Incorreto , Doenças Retinianas/genética
4.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203967

RESUMO

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Assuntos
Análise Custo-Benefício , Éxons/genética , Proteínas da Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sítios de Splice de RNA/genética , Retinose Pigmentar/genética , Análise de Sequência de DNA , Síndromes de Usher/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética , Deleção de Genes , Humanos , Polimorfismo de Nucleotídeo Único/genética , Retinose Pigmentar/economia , Síndromes de Usher/economia
5.
Hum Mutat ; 40(10): 1749-1759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212395

RESUMO

PURPOSE: Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS: Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS: Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS: smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Análise Mutacional de DNA/métodos , Íntrons , Sondas Moleculares , Mutação , Doença de Stargardt/diagnóstico , Doença de Stargardt/genética , Alelos , Biologia Computacional , Éxons , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Linhagem , Splicing de RNA
6.
Mol Vis ; 25: 106-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820146

RESUMO

Purpose: Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous showing progressive retinal cell death which results in vision loss. IRDs include a wide spectrum of disorders, such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), cone-rod dystrophy (CRD), and Stargardt disease (STGD1). Methods: In this study, we performed targeted next-generation sequencing based on molecular inversion probes (MIPs) that allowed the sequence analysis of 108 IRD-associated genes in 50 Iranian IRD probands. Results: The sequencing and variant filtering led to the identification of putative pathogenic variants in 36 out of 50 (72%) probands. Among 36 unique variants, we identified 20 novel variants in 15 genes. Four out of 36 probands carry compound heterozygous variants, and 32 probands carry homozygous variants. Conclusions: Employing a cost-effective targeted next-generation sequencing procedure, we identified the genetic causes of different retinal disorders in the majority of Iranian families in this study.


Assuntos
Distrofias de Cones e Bastonetes/genética , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Degeneração Macular/congênito , Mutação , Retinose Pigmentar/genética , Adolescente , Adulto , Criança , Distrofias de Cones e Bastonetes/metabolismo , Distrofias de Cones e Bastonetes/patologia , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Irã (Geográfico) , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Linhagem , Fenótipo , Retina/metabolismo , Retina/patologia , Retinose Pigmentar/congênito , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Doença de Stargardt
7.
Hum Mutat ; 39(2): 177-186, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29159838

RESUMO

Mutations in Eyes shut homolog (EYS) are one of the most common causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive blinding disorder. The exact function of the EYS protein and the pathogenic mechanisms underlying EYS-associated RP are still poorly understood, which hampers the interpretation of the causality of many EYS variants discovered to date. We collected all reported EYS variants present in 377 arRP index cases published before June 2017, and uploaded them in the Leiden Open Variation Database (www.LOVD.nl/EYS). We also describe 36 additional index cases, carrying 26 novel variants. Of the 297 unique EYS variants identified, almost half (n = 130) are predicted to result in premature truncation of the EYS protein. Classification of all variants using the American College of Medical Genetics and Genomics guidelines revealed that the predicted pathogenicity of these variants cover the complete spectrum ranging from likely benign to pathogenic, although especially missense variants largely fall in the category of uncertain significance. Besides the identification of likely benign alleles previously reported as being probably pathogenic, our comprehensive analysis underscores the need of functional assays to assess the causality of EYS variants, in order to improve molecular diagnostics and counseling of patients with EYS-associated RP.


Assuntos
Proteínas do Olho/genética , Mutação/genética , Retinose Pigmentar/genética , Alelos , Genótipo , Humanos , Mutação de Sentido Incorreto/genética , Fenótipo , Sítios de Splice de RNA/genética
8.
J Mol Diagn ; 11(6): 514-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19779133

RESUMO

In this study, we developed and analytically validated a fully automated, robust confirmation sensitive capillary electrophoresis (CSCE) method to perform mutation scanning of the large SACS gene. This method facilitates a rapid and cost-effective molecular diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Critical issues addressed during the development of the CSCE system included the position of a DNA variant relative to the primers and the CG-content of the amplicons. The validation was performed in two phases; a retrospective analysis of 32 samples containing 41 different known DNA variants and a prospective analysis of 20 samples of patients clinically suspected of having autosomal recessive spastic ataxia of Charlevoix-Saguenay. These 20 samples appeared to contain 73 DNA variants. In total, in 32 out of the 45 amplicons, a DNA variant was present, which allowed verification of the detection capacity during the validation process. After optimization of the original design, the overall analytical sensitivity of CSCE for the SACS gene was 100%, and the analytical specificity of CSCE was 99.8%. In conclusion, CSCE is a robust technique with a high analytical sensitivity and specificity, and it can readily be used for mutation scanning of the large SACS gene. Furthermore this technique is less time-consuming and less expensive, as compared with standard automated sequencing.


Assuntos
Análise Mutacional de DNA/métodos , Eletroforese Capilar/métodos , Proteínas de Choque Térmico/genética , Análise Mutacional de DNA/economia , Eletroforese Capilar/normas , Humanos , Mutação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA