Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(6): 1263-1267, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855031

RESUMO

The cost of walking and running on uneven terrain is not directly explained by external mechanical work. Although metabolic cost of transport increases linearly with gradient at uphill and downhill gradients exceeding 15%, at shallower gradients, the relationship is nonlinear, with the minimum cost occurring at ∼10% downhill grade. Given these nonlinear relationships between grade and metabolic cost, we projected a significant difference in the total metabolic cost of two walking conditions that required the same total external mechanical work be performed over the same total period of time; in one condition, time was spent walking to gradients that were fixed at +10.5% and -10.5% and in the other condition time was spent walking to gradients that varied from 0 to +21% and from -21 to 0%. We compared these two conditions experimentally, using an approach to quantify nonsteady-state oxidative energy expenditure. In line with our projection, the "variable" grade condition resulted in an 8.3 ± 2.2% higher total cumulative oxidative energy expenditure (J·kg-1) compared with the "fixed" grade condition (P < 0.001). Future work should aim to apply our approach across different gradients, speeds, and forms of locomotion; especially those that might provide insight into how humans optimize locomotion on variable grade routes.NEW & NOTEWORTHY We use a method for quantifying nonsteady-state energetics to show that regardless of whether the same total gain and loss in elevation (i.e., same total external mechanical work) is achieved over the same period of time, the total energy expenditure of different graded walking conditions can vary depending on the grades that are walked at and for how long they are walked at.


Assuntos
Corrida , Caminhada , Humanos , Locomoção , Metabolismo Energético
2.
J Exp Biol ; 226(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37227005

RESUMO

Many models have been developed to predict metabolic energy expenditure based on biomechanical proxies of muscle function. However, current models may only perform well for select forms of locomotion, not only because the models are rarely rigorously tested across subtle and broad changes in locomotor task but also because previous research has not adequately characterised different forms of locomotion to account for the potential variability in muscle function and thus metabolic energy expenditure. To help to address the latter point, the present study imposed frequency and height constraints to hopping and quantified gross metabolic power as well as the activation requirements of medial gastrocnemius (MG), lateral gastrocnemius (GL), soleus (SOL), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF), and the work requirements of GL, SOL and VL. Gross metabolic power increased with a decrease in hop frequency and increase in hop height. There was no hop frequency or hop height effect on the mean electromyography (EMG) data of ankle musculature; however, the mean EMG of VL and RF increased with a decrease in hop frequency and that of BF increased with an increase in hop height. With a reduction in hop frequency, GL, SOL and VL fascicle shortening, fascicle shortening velocity and fascicle to MTU shortening ratio increased, whereas with an increase in hop height, only SOL fascicle shortening velocity increased. Therefore, within the constraints that we imposed, decreases in hop frequency and increases in hop height resulted in increases in metabolic power that could be explained by increases in the activation requirements of knee musculature and/or increases in the work requirements of both knee and ankle musculature.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Músculo Quadríceps/fisiologia , Extremidade Inferior , Locomoção/fisiologia , Fenômenos Biomecânicos
3.
J Arthroplasty ; 29(1): 85-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23725927

RESUMO

This study evaluated the energy cost of walking (Cw) with knee flexion contractures (FC) simulated with a knee brace, in total knee arthroplasty (TKA) recipients (n=16) and normal controls (n=15), and compared it to baseline (no brace). There was no significant difference in Cw between the groups at baseline but TKA recipients walked slower (P=0.048) and with greater knee flexion in this condition (P=0.003). Simulated FC significantly increased Cw in both groups (TKA P=0.020, control P=0.002) and this occurred when FC exceeded 20° in the TKA group and 15° in the controls. Reported perceived exertion was only significantly increased by FC in the control group (control P<0.001, TKA P=0.058). Simulated knee FCs less than 20° do not increase Cw or perceived exertion in TKA recipients.


Assuntos
Artroplastia do Joelho/efeitos adversos , Contratura/fisiopatologia , Artropatias/cirurgia , Articulação do Joelho/fisiopatologia , Esforço Físico/fisiologia , Caminhada/fisiologia , Idoso , Fenômenos Biomecânicos , Contratura/etiologia , Metabolismo Energético , Feminino , Marcha/fisiologia , Humanos , Artropatias/fisiopatologia , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Consumo de Oxigênio , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA