Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neurotrauma ; 36(21): 3034-3043, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044642

RESUMO

Despite advances in the treatment of acute spinal cord injury (SCI), measures to mitigate permanent neurological deficits in affected patients are limited. Immediate post-trauma hemodynamic management of patients, to maintain blood supply and improve oxygenation to the injured spinal cord, is currently one aspect of critical care which clinicians can utilize to improve neurological outcomes. However, without a way to monitor the response of spinal cord hemodynamics and oxygenation in real time, optimizing hemodynamic management is challenging and limited in scope. This study aims to investigate the feasibility and validity of using a miniaturized multi-wavelength near-infrared spectroscopy (NIRS) sensor for direct transdural monitoring of spinal cord oxygenation in an animal model of acute SCI. Nine Yorkshire pigs underwent a weight-drop T10 contusion-compression injury and received episodes of ventilatory hypoxia and alterations in mean arterial pressure (MAP). Spinal cord hemodynamics and oxygenation were monitored throughout by a non-invasive transdural NIRS sensor, as well as an invasive intraparenchymal sensor as a comparison. NIRS parameters of tissue oxygenation were highly correlated with intraparenchymal measures of tissue oxygenation. In particular, during periods of hypoxia and MAP alterations, changes of NIRS-derived spinal cord oxygenated hemoglobin and tissue oxygenation percentage corresponded well with the changes in spinal cord oxygen partial pressures measured by the intraparenchymal sensor. Our data confirm that during hypoxic episodes and as changes occur in the MAP, non-invasive NIRS can detect and measure real-time changes in spinal cord oxygenation with a high degree of sensitivity and specificity.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/irrigação sanguínea , Animais , Feminino , Suínos
2.
Bone ; 125: 36-45, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071479

RESUMO

The risk of hip fracture of a patient due to a fall can be described from a mechanical perspective as the capacity of the femur to withstand the force that it experiences in the event of a fall. So far, impact forces acting on the lateral aspect of the pelvic region and femur strength have been investigated separately. This study used inertia-driven cadaveric impact experiments that mimic falls to the side from standing in order to evaluate the subject-specific force applied to the hip during impact and the fracture outcome in the same experimental model. Eleven fresh-frozen pelvis-femur constructs (6 female, 5 male, age = 77 years (SD = 13 years), BMI = 22.8 kg/m2 (SD = 7.8 kg/m2), total hip aBMD = 0.734 g/cm2 (SD = 0.149 g/cm2)), were embedded into soft tissue surrogate material that matched subject-specific mass and body shape. The specimens were attached to metallic lower-limb constructions with subject-specific masses and subjected to an inverted pendulum motion. Impact forces were recorded with a 6-axis force plate at 10,000 Hz and three dimensional deflections in the pelvic region were tracked with two high-speed cameras at 5000 Hz. Of the 11 specimens, 5 femur fractures and 3 pelvis fractures were observed. Three specimens did not fracture. aBMD alone did not reliably separate femur fractures from non-fractures. However, a mechanical risk ratio, which was calculated as the impact force divided by aBMD, classified specimens reliably into femur fractures and non-fractures. Single degree of freedom models, based on specimen kinetics, were able to predict subject-specific peak impact forces (RMSE = 2.55% for non-fractures). This study provides direct evidence relating subject-specific impact forces and subject-specific strength estimates and improves the assessment of the mechanical risk of hip fracture for a specific femur/pelvis combination in a sideways fall.


Assuntos
Fraturas do Quadril/etiologia , Medição de Risco/métodos , Acidentes por Quedas/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Fraturas do Fêmur/epidemiologia , Fêmur/lesões , Análise de Elementos Finitos , Fraturas do Quadril/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Ossos Pélvicos/lesões , Estresse Mecânico
3.
J Occup Environ Hyg ; 9(6): 371-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22571854

RESUMO

Occupational whole-body vibration is often studied as a risk factor for conditions that may arise soon after exposure, but only rarely have studies examined associations with conditions arising long after occupational exposure has ceased. We aimed to develop a method of constructing previous occupational whole-body vibration exposure metrics from self-reported data collected for a case-control study of Parkinson's disease. A detailed job history and exposure interview was administered to 808 residents of British Columbia, Canada (403 people with Parkinson's disease and 405 healthy controls). Participants were prompted to report exposure to whole-body vibrating equipment. We limited the data to exposure reports deemed to be above background exposures and used the whole-body vibration literature (typically reporting on seated vector sum measurements) to assign intensity (acceleration) values to each type of equipment reported. We created four metrics of exposure (duration of exposure, most intense equipment exposure, and two dose metrics combining duration and intensity) and examined their distributions and correlations. We tested the role of age and gender in predicting whole-body vibration exposure. Thirty-six percent of participants had at least one previous occupational exposure to whole-body vibrating equipment. Because less than half of participants reported exposure, all continuous metrics exhibited positively skewed distributions, although the distribution of most intense equipment exposure was more symmetrically distributed among the exposed. The arithmetic mean of duration of exposure among those exposed was 14.0 (standard deviation, SD: 14.2) work years, while the geometric mean was 6.8 (geometric SD, GSD: 4.5). The intensity of the most intense equipment exposure (among the exposed) had an arithmetic mean of 0.9 (SD: 0.3) m·s(-2) and a geometric mean of 0.8 (GSD: 1.4). Male gender and older age were both associated with exposure, although the effect of age was attenuated after adjustment for gender. The methods developed allowed us to create continuous metrics of whole-body vibration retrospectively, displaying useful variance for epidemiologic studies.


Assuntos
Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Vibração/efeitos adversos , Fatores Etários , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/estatística & dados numéricos , Estudos Retrospectivos , Fatores de Risco , Autorrelato , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA