Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hepatol ; 61(5): 1020-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24905493

RESUMO

BACKGROUND & AIMS: There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival. METHODS: 64 donor and recipient variables from a set of 1003 LTs from a multicenter study including 11 Spanish centres were included. For each D-R pair, common statistics (simple and multiple regression models) and ANN formulae for two non-complementary probability-models of 3-month graft-survival and -loss were calculated: a positive-survival (NN-CCR) and a negative-loss (NN-MS) model. The NN models were obtained by using the Neural Net Evolutionary Programming (NNEP) algorithm. Additionally, receiver-operating-curves (ROC) were performed to validate ANNs against other scores. RESULTS: Optimal results for NN-CCR and NN-MS models were obtained, with the best performance in predicting the probability of graft-survival (90.79%) and -loss (71.42%) for each D-R pair, significantly improving results from multiple regressions. ROC curves for 3-months graft-survival and -loss predictions were significantly more accurate for ANN than for other scores in both NN-CCR (AUROC-ANN=0.80 vs. -MELD=0.50; -D-MELD=0.54; -P-SOFT=0.54; -SOFT=0.55; -BAR=0.67 and -DRI=0.42) and NN-MS (AUROC-ANN=0.82 vs. -MELD=0.41; -D-MELD=0.47; -P-SOFT=0.43; -SOFT=0.57, -BAR=0.61 and -DRI=0.48). CONCLUSIONS: ANNs may be considered a powerful decision-making technology for this dataset, optimizing the principles of justice, efficiency and equity. This may be a useful tool for predicting the 3-month outcome and a potential research area for future D-R matching models.


Assuntos
Inteligência Artificial , Transplante de Fígado/estatística & dados numéricos , Doadores de Tecidos , Adolescente , Adulto , Idoso , Algoritmos , Tomada de Decisões Assistida por Computador , Feminino , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada , Redes Neurais de Computação , Prognóstico , Espanha , Transplantados , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA