Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Assist Tomogr ; 47(6): 959-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948372

RESUMO

OBJECTIVE: This study aimed to perform an assessment of brain microstructure in children with autism aged 2 to 5 years using relaxation times acquired by synthetic magnetic resonance imaging. MATERIALS AND METHODS: Thirty-four children with autism spectrum disorder (ASD) (ASD group) and 17 children with global developmental delay (GDD) (GDD group) were enrolled, and synthetic magnetic resonance imaging was performed to obtain T1 and T2 relaxation times. The differences in brain relaxation times between the 2 groups of children were compared, and the correlation between significantly changed T1/T2 and clinical neuropsychological scores in the ASD group was analyzed. RESULTS: Compared with the GDD group, shortened T1 relaxation times in the ASD group were distributed in the genu of corpus callosum (GCC) ( P = 0.003), splenium of corpus callosum ( P = 0.002), and right thalamus (TH) ( P = 0.014), whereas shortened T2 relaxation times in the ASD group were distributed in GCC ( P = 0.011), left parietal white matter ( P = 0.035), and bilateral TH (right, P = 0.014; left, P = 0.016). In the ASD group, the T2 of the left parietal white matter is positively correlated with gross motor (developmental quotient [DQ] 2) and personal-social behavior (DQ5), respectively ( r = 0.377, P = 0.028; r = 0.392, P = 0.022); the T2 of the GCC was positively correlated with DQ5 ( r = 0.404, P = 0.018); and the T2 of the left TH is positively correlated with DQ2 and DQ5, respectively ( r = 0.433, P = 0.009; r = 0.377, P = 0.028). All significantly changed relaxation values were not significantly correlated with Childhood Autism Rating Scale scores. CONCLUSIONS: The shortened relaxometry times in the brain of children with ASD may be associated with the increased myelin content and decreased water content in the brain of children with ASD in comparison with GDD, contributing the understanding of the pathophysiology of ASD. Therefore, the T1 and T2 relaxometry may be used as promising imaging markers for ASD diagnosis.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Substância Branca , Humanos , Pré-Escolar , Criança , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia
2.
Huan Jing Ke Xue ; 37(2): 420-6, 2016 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-27363126

RESUMO

According to global average land productivities in 2000, this study calculated ecological footprint (EF) in China from 2000 to 2010, and analyzed its dynamic characteristics and socio-economic driving forces. The results showed that the total EF in China increased from 1.769 to 3.259 billion global hectares (gha) from 2000 to 2010, and its annual growth rate was 6.30%. Carbon Footprint was the fastest growth type of EF. It increased from 0.742 to 1.805 billion gha, and its annual growth rate was 9.29%. The net increase of cropland Footprint was also large in comparison to other types of Footprint. It increased from 0.678 to 0.891 billion gha. Per capita EF in China increased from 1.40 to 2.43 gha in this period. Although it was still below the world average level, it was far beyond per capita ecological carrying capacity in China, which led to serious ecological deficit and severe ecological crisis in China. The fast growth of per capita EF was the main driving force for the growth of total EF in China during the study period. Further, the growth of per capita EF was positively influenced by the growth of per capita consumption of products and severs, which was driven by economic growth and urbanization. Meanwhile, a large amount of exports of resource-intensive products in international trade was also an important driving force for EF growth. According to the evolution route of per capita EF in developed countries, along with China moving from middle-income to high-income country, per capita EF will maintain rapid growth, and ecological deficit in China will further exacerbate.


Assuntos
Pegada de Carbono , Desenvolvimento Econômico , Urbanização , China , Conservação dos Recursos Naturais , Ecologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA