Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Environ Manage ; 360: 121196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763117

RESUMO

At present, biochar has a large application potential in soil amelioration, pollution remediation, carbon sequestration and emission reduction, and research on the effect of biochar on soil ecology and environment has made positive progress. However, under natural and anthropogenic perturbations, biochar may undergo a series of environmental behaviors such as migratory transformation, mineralization and decomposition, and synergistic transport, thus posing certain potential risks. This paper outlines the multi-interfacial migration pathway of biochar in "air-soil-plant-animal-water", and analyzes the migration process and mechanism at different interfaces during the preparation, transportation and application of biochar. The two stages of the biochar mineralization process (mineralization of easily degradable aliphatic carbon components in the early stage and mineralization of relatively stable aromatic carbon components in the later stage) were described, the self-influencing factors and external environmental factors of biochar mineralization were analyzed, and the mineral stabilization mechanism and positive/negative excitation effects of biochar into the soil were elucidated. The proximity between field natural and artificially simulated aging of biochar were analyzed, and the change of its properties showed a trend of biological aging > chemical aging > physical aging > natural aging, and in order to improve the simulation and prediction, the artificially simulated aging party needs to be changed from a qualitative method to a quantitative method. The technical advantages, application scope and potential drawbacks of different biochar modification methods were compared, and biological modification can create new materials with enhanced environmental application. The stability performance of modified biochar was compared, indicating that raw materials, pyrolysis temperature and modification method were the key factors affecting the stability of biochar. The potential risks to the soil environment from different pollutants carried by biochar were summarized, the levels of pollutants released from biochar in the soil environment were highlighted, and a comprehensive selection of ecological risk assessment methods was suggested in terms of evaluation requirements, data acquisition and operation difficulty. Dynamic tracing of migration decomposition behavior, long-term assessment of pollution remediation effects, and directional design of modified composite biochar materials were proposed as scientific issues worthy of focused attention. The results can provide a certain reference basis for the theoretical research and technological development of biochar.


Assuntos
Carvão Vegetal , Ecossistema , Solo , Carvão Vegetal/química , Solo/química , Medição de Risco , Poluentes do Solo , Ecologia
3.
Front Plant Sci ; 13: 930484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783937

RESUMO

To meet the demand of the fast increasing population, enhancing the wheat (Triticum aestivum L.) yield and resource use efficiency by optimizing water and nitrogen (N) management can greatly improve agricultural sustainability and enhance regenerative farming in developing countries such as China. Based on 126 studies conducted in China between 1996 and 2018, using meta-analysis in combination with decision regression tree modeling and life cycle assessment (LCA), this study aimed to (1) quantify the effect of water and N input on wheat yield, water productivity (WP c ), and N use efficiency (NUE f ), and evaluate the subsequent environmental impact in different regions using LCA; and (2) evaluate, model, and rank the roles of environmental (e.g., soil nutrient status and climatic factors) and agronomic factors (e.g., water and N management practices) affecting wheat yield, WP c , and NUE f . The results showed that irrigation and N addition increased the average yield and WP c by 40 and 15%, respectively, relative to control treatments with no irrigation or fertilizer application. The mean water saving potential (WSP) and N saving potential (NSP) in China were estimated at 11 and 10%, respectively. Soil nutrient status [e.g., initial soil phosphorus (P) and potassium (K)] and soil organic carbon content affected the wheat yield, WP c , and NUE f more significantly than climatic factors [mean annual temperature (MAT)] or water and N management practices. The structural equation-based modeling indicated that initial soil nutrient condition impacted productivity and resource use efficiency more at the below optimal water and N levels than above. The risk-factor-based feature ranking indicated that site-specific environmental and soil condition was highly informative toward model construction but split input of N or water had less impact on yield and input use efficiency. LCA demonstrated that to further mitigate greenhouse gas emissions, water- or N-saving management should be promoted in China. Collectively, our research implies that long-term soil health and nutrient enhancement should be more beneficial for increasing yield and resource use efficiency in wheat production.

4.
Ecotoxicol Environ Saf ; 213: 111983, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582413

RESUMO

Methyl siloxanes are identified as emerging persistent toxic compounds and the ecological environment risks of these compounds have been caused of great concern worldwide. In this study, the concentrations of methyl siloxanes were reported in dissolved water and crucian carp around a methyl siloxane production factory located in Liaoning Province, Northeast China. D4, D5, D6, D7, L4, L5 and L6 were detectable both in dissolved water and crucian carp. The total concentrations of 7 methyl siloxanes (Σ7MS) were 14 ± 6.3 ng/L in dissolved water and 43 ± 22 ng/g ww in crucian carp, respectively. D5 has the highest concentration both in dissolved water (5.5 ± 3.5 ng/L) and crucian carp (17 ± 11 ng/g ww). Based on the monitoring values, bioaccumulation factor (BAF) of these compounds were calculated. Significant bioaccumulation potential was observed for D4 (BAF = 5900 ± 3500 L/kg) based on the bioaccumulation criteria suggested by USEPA and EU (BAF > 5000 L/kg). To our understanding, this is the first report of BAF values of methyl siloxane in field study, which will provide important support for further assessment of bioaccumulation of these compounds.


Assuntos
Carpas/metabolismo , Siloxanas/análise , Siloxanas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bioacumulação , China , Monitoramento Ambiental , Carpa Dourada/metabolismo , Poluentes Químicos da Água/análise
5.
Environ Sci Ecotechnol ; 8: 100128, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36156999

RESUMO

Neonicotinoid insecticides (NNIs) have been intensively used and exploited, resulting in their presence and accumulation in multiple environmental media. We herein investigated the current levels of eight major NNIs in the Harbin section of the Songhua River in northeast China, providing the first systematic report on NNIs in this region. At least four NNIs in water and three in sediment were detected, with total concentrations ranging from 30.8 to 135 ng L-1 and from 0.61 to 14.7 ng g-1 dw, respectively. Larger spatial variations in surface water NNIs concentrations were observed in tributary than mainstream (p < 0.05) due to the intensive human activities (e.g., horticulture, urban landscaping, and household pet flea control) and the discharge of wastewater from many treatment plants. There was a significant positive correlation (p < 0.05) between the concentrations of residual imidacloprid (IMI), clothianidin (CLO), and Σ4NNIs in the sediment and total organic carbon (TOC). Due to its high solubility and low octanol-water partition coefficient (K ow), the sediment-water exchange behavior shows that NNIs in sediments can re-enter into the water body. Human exposure risk was assessed using the relative potency factor (RPF), which showed that infants have the highest exposure risk (estimated daily intake (ΣIMIeq EDI): 31.9 ng kg-1 bw·d-1). The concentration thresholds of NNIs for aquatic organisms in the Harbin section of the Songhua River were determined using the species sensitivity distribution (SSD) approach, resulting in a value of 355 ng L-1 for acute hazardous concentration for 5% of species (HC5) and 165 ng L-1 for chronic HC5. Aquatic organisms at low trophic levels were more vulnerable to potential harm from NNIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA