Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxics ; 11(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999556

RESUMO

Direct sewage discharge can cause severe damage to the water environment of the river. However, the impacts of dissolved organic matter (DOM) in the discharge on the original pattern of DOM and the distribution of heavy metals (HMs) in the river are little known. How to monitor such areas in a long-term and systematic manner also needs to be urgently addressed. In this paper, we characterized the DOM of the sediments in the WWTPs (wastewater treatment plants)-river integrated zone by ultraviolet-visible absorption spectroscopy (UV-vis), three-dimensional excitation-emission matrix (3D-EEM) combined with parallel factor (PARAFAC) method. The effects of WWTP on receiving waters were investigated, and the potential link between DOM and HM pollution was explored. Hg (Igeo: 3.94 ± 0.65; EF: 44.83 ± 31.11), Cd (Igeo: 1.81 ± 0.69; EF: 8.02 ± 2.97), Cu (Igeo: 1.61 ± 0.83; EF: 6.85 ± 2.37), Zn (Igeo: 1.55 ± 0.54; EF: 7.24 ± 3.58), and Ni (Igeo: 1.46 ± 0.56; EF: 6.12 ± 1.99) in rivers were the primary risk sources of HM. The combined pollution risk indicates that the WWTPs-river integrated area is in a high pollution risk state. Moreover, α(254) has a significant correlation with pollution indicators and can be used as a proxy indicator. These results help to understand better the impact of WWTPs on receiving water bodies and the potential connection between DOM and HM pollution and provide new ideas for monitoring the water environment in highly polluted areas.

2.
Environ Geochem Health ; 45(8): 6693-6711, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355494

RESUMO

The direct discharge of wastewater can cause severe damage to the water environment of the surface water. However, the influence of dissolved organic matter (DOM) present in wastewater on the allocation of DOM, nitrogen (N), and phosphorus (P) in rivers remains largely unexplored. Addressing the urgent need to monitor areas affected by direct wastewater discharge in a long-term and systematic manner is crucial. In this paper, the DOM of overlying water and sediment in the WWTPs-river-integrated area was characterized by ultraviolet-visible absorption spectroscopy (UV-vis), three-dimensional excitation-emission matrix combined with parallel factor (PARAFAC) method. The effects of WWTPs on receiving waters were investigated, and the potential link between DOM and N, P pollution was explored. The pollution risk was fitted and predicted using a spectral index. The results indicate that the improved water quality index (IWQI) is more suitable for the WWTPs-river integration zone. The DOM fraction in this region is dominated by humic-like matter, which is mainly influenced by WWTPs drainage as well as microbial activities. The DOM fractions in sediment and overlying water were extremely similar, but fluorescence intensity possessed more significant spatial differences. The increase in humic-like matter facilitates the production and preservation of P and also inhibits nitrification, thus affecting the N cycle. There is a significant correlation between DOM fraction, fluorescence index, and N, P. Fluorescence index (FI) fitting of overlying water DOM predicted IWQI and trophic level index, and a(254) fitting of sediment DOM predicted nitrogen and phosphorus pollution risk (FF) with good results. These results contribute to a better understanding of the impact of WWTPs on receiving waters and the potential link between DOM and N and P pollution and provide new ideas for monitoring the water environment in highly polluted areas.


Assuntos
Rios , Águas Residuárias , Rios/química , Matéria Orgânica Dissolvida , Espectrometria de Fluorescência , Nitrogênio/análise , Fósforo , Substâncias Húmicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA