Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Med Chem ; 20(1): 78-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37594099

RESUMO

INTRODUCTION: Inflammation can be defined as a complex biological response that is produced by body tissues to harmful agents like pathogens, irritants, and damaged cells and thereby acts as a protective response incorporating immune cells, blood vessels, and molecular mediators. Histamine, serotonin, bradykinin, leukotrienes (LTB4), prostaglandins (PGE2), prostacyclins, reactive oxygen species, proinflammatory cytokines like IL-1, IL-11, TNF- anti-inflammatory cytokines like IL-4, IL-10, IL-11, IL-6 and IL-13, etc. all have different effects on both pro and anti-inflammatory mediators. Incorporation of combinatorial chemistry and computational studies have helped the researchers to design xanthones moieties with high selectivity that can serve as a lead compound and help develop potential compounds that can act as effective COX-2 inhibitors. The study aims to design and develop different series of substituted hydroxyxanthone derivatives with anti-inflammatory potential. METHODS: The partially purified synthetic xanthone derivatives were orally administered to the carrageenan induced paw oedemic rat models at the dose of 100 mg/kg, and their effect in controlling the degree of inflammation was measured at the time interval of 30 min, 1, 2, 3, 4 and 6 hrs. respectively. Further, these compounds were also subjected to modern analytical studies like UV, IR, NMR and mass spectrometry or their characterization. RESULTS: The results drawn out of the in silico, in vitro, in vivo and analytical studies concluded that the hydroxyxanthone derivatives can obstruct the enzyme COX-2 and produce anti-inflammatory action potentially. CONCLUSION: With the aim to evaluate the compounds for their anti-inflammatory activity, it was observed that the newly designed xanthonic compounds also possess a safe toxicity margin and hence can be utilized by the researchers to develop hybrid xanthonic moieties that can specifically target the enzyme COX-2.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Xantonas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-11/metabolismo , Relação Quantitativa Estrutura-Atividade , Xantonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA