Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(4): 2036-2050, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36598649

RESUMO

Misfolded peptide amyloid beta (Aß42), neurofibrillary tangles of hyper-phosphorylated tau, oxidative damage to the brain, and neuroinflammation are distinguished determinants of Alzheimer's disease (AD) responsible for disease progression. This multifaceted neurodegenerative disease is challenging to cure under a single treatment regime until the key disease determinants are traced for their sequential occurrence in disease progression. In an early report, a novel side-chain tripeptide containing PEGylated block copolymer has been tested thoroughly in vitro and in silico for the early inhibition of Aß42 aggregation as well as degradation of preformed Aß42 fibril deposits. The present study demonstrates a preclinical assessment of the PEGylated block copolymer in colchicine-induced AD-mimicking rodent model. The colchicine-induced Wistar rats receiving an intranasal delivery of the block copolymer at a daily dosage of 100 µg/kg and 200 µg/kg body weights, respectively, for 14 days manifested a notable attenuation of behavioral deficit pattern, oxidative stress, and neurotransmitters' deficiency as compared to the untreated ones. The current study also reports the ameliorative property of the PEGylated compound for progressive neuroinflammation and decreased mitochondrial bioenergetics in astrocytoma cell line, viz., U87. A closer look into the drug mechanism of action of a compact 3D PEGylated block copolymer confirmed its disintegrative interaction with Aß42 fibril via in silico simulation. The results obtained from this study signify the potential of the novel PEGylated block copolymer to ameliorate the cognitive decline and progressive oxidative insults in AD and may envision a successful clinical phase trial. The amelioration of disease condition of colchicine-induced AD rat. Initially the rat has given colchicine via stereotaxic surgery which led to a mimicking condition of AD including neuronal death in hippocampal CA1 region. After recovery from the surgery, the rat was treated with the PEGylated block copolymer through intranasal delivery, and this has led to the decrease in neuronal death in hippocampal CA1 region. The mechanism of drug action has shown by the separation of monomer chains of Aß42.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Roedores/metabolismo , Doenças Neuroinflamatórias , Ratos Wistar , Cognição , Estresse Oxidativo , Polietilenoglicóis , Progressão da Doença , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo
2.
Int J Neurosci ; 128(5): 449-463, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29076790

RESUMO

Misfolded ß-sheet structures of proteins leading to neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) are in the spotlight since long. However, not much was known about the functional amyloids till the last decade. Researchers have become increasingly more concerned with the degree of involvement of these functional amyloids in human physiology. Interestingly, it has been found that the human body is exposed to a tremendous systemic amyloid burden, especially, during aging. Although many findings regarding these functional amyloids come up every day, some questions still remain unanswered like do these functional amyloids directly involve in the fibrillization of amyloid beta (Aß) 42 peptide or enhance the Aß42 aggregation rate; whether functional bacterial amyloids (FuBA) co-localize with the senile plaques of AD or not. A detailed review of the latest status regarding the interrelationship between functional amyloids, pathogenic amyloids and misfolded prions and therapeutic assessment of functional amyloids for the treatment of neurodegenerative diseases can help identify an alternative medication for neurodegeneration. A unique mathematical model is proposed here for alteration of Aß42 aggregation kinetics in AD to carve out the future direction of therapeutic consideration.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Amiloide/química , Evolução Biológica , Simulação por Computador , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Proteínas Priônicas/metabolismo , Deficiências na Proteostase/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA