Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int Microbiol ; 24(3): 441-453, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33987705

RESUMO

Globally, the underlying peril of cumulative toxicity of heavy metals in water bodies contaminated by industrial effluents is a matter of great concern to the environmentalists. Heavy metals like lead, cadmium, and nickel are particularly liable for this. Such toxic water is not only hazardous to human health but also harmful to aquatic animals. Remedial measures are being taken by physico-chemical techniques, but most of them are neither eco-friendly nor cost-effective. Biological means like bioaccumulation of heavy metals by viable bacteria are often tedious. In the present study, biosorption of heavy metals is successfully expedited by surfactant exopolysaccharide (SEPS) of Ochrobactrum pseudintermedium C1 as a simple, safe, and economically sustainable option utilizing an easily available and cost-effective substrate like molasses extract. Its efficacy in bioremediation of toxic heavy metals like cadmium, nickel, and lead have been studied by UV-Vis spectrophotometry and verified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). FTIR and zeta potential studies have also been carried out to explore this novel biosorption potential. Results are conclusive and promising. Moreover, this particular SEPS alone can remediate all these three toxic heavy metals in water. For futuristic applications, it might be a prospective and cost-effective resource for bioremediation of toxic heavy metals in aqueous environment.


Assuntos
Metais Pesados/metabolismo , Ochrobactrum/metabolismo , Polissacarídeos Bacterianos/metabolismo , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Análise Custo-Benefício , Chumbo/metabolismo , Microscopia Eletrônica de Varredura , Níquel/metabolismo , Polissacarídeos Bacterianos/ultraestrutura
2.
Curr Microbiol ; 77(11): 3224-3239, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32876713

RESUMO

The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen-phosphorous-potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Desenvolvimento Sustentável , Agricultura , Bactérias , Fertilizantes , Solo
3.
Biochim Biophys Acta Biomembr ; 1860(2): 579-585, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28988129

RESUMO

Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future.


Assuntos
Escherichia coli/efeitos dos fármacos , Glicolipídeos/farmacologia , Lipopeptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/farmacologia , Antibacterianos/farmacologia , Bacillus/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Cinética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA