Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 225(3): 1072-1090, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31004496

RESUMO

Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.


Assuntos
Produtos Agrícolas/fisiologia , Metabolismo Energético , Tolerância ao Sal/fisiologia , Transporte Biológico , Respiração Celular , Raízes de Plantas/anatomia & histologia
3.
Plant Cell ; 16(1): 241-56, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14671022

RESUMO

A novel insight into Arabidopsis mitochondrial function was revealed from a large experimental proteome derived by liquid chromatography-tandem mass spectrometry. Within the experimental set of 416 identified proteins, a significant number of low-abundance proteins involved in DNA synthesis, transcriptional regulation, protein complex assembly, and cellular signaling were discovered. Nearly 20% of the experimentally identified proteins are of unknown function, suggesting a wealth of undiscovered mitochondrial functions in plants. Only approximately half of the experimental set is predicted to be mitochondrial by targeting prediction programs, allowing an assessment of the benefits and limitations of these programs in determining plant mitochondrial proteomes. Maps of putative orthology networks between yeast, human, and Arabidopsis mitochondrial proteomes and the Rickettsia prowazekii proteome provide detailed insights into the divergence of the plant mitochondrial proteome from those of other eukaryotes. These show a clear set of putative cross-species orthologs in the core metabolic functions of mitochondria, whereas considerable diversity exists in many signaling and regulatory functions.


Assuntos
Arabidopsis/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Biologia Computacional , DNA de Plantas/genética , DNA de Plantas/metabolismo , Bases de Dados Factuais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Espectrometria de Massas , Proteínas Mitocondriais/análise , Peroxissomos/metabolismo , Proteoma/análise , RNA de Plantas/genética , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA