Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Int ; 179: 108154, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37603993

RESUMO

BACKGROUND: Short-term associations between heat and cardiovascular disease (CVD) mortality have been examined mostly in large cities. However, different vulnerability and exposure levels may contribute to spatial heterogeneity. This study assessed heat effects on CVD mortality and potential vulnerability factors using data from three European countries, including urban and rural settings. METHODS: We collected daily counts of CVD deaths aggregated at the small-area level in Norway (small-area level: municipality), England and Wales (lower super output areas), and Germany (district) during the warm season (May-September) from 1996 to 2018. Daily mean air temperatures estimated by spatial-temporal models were assigned to each small area. Within each country, we applied area-specific Quasi-Poisson regression using distributed lag nonlinear models to examine the heat effects at lag 0-1 days. The area-specific estimates were pooled by random-effects meta-analysis to derive country-specific and overall heat effects. We examined individual- and area-level heat vulnerability factors by subgroup analyses and meta-regression, respectively. RESULTS: We included 2.84 million CVD deaths in analyses. For an increase in temperature from the 75th to the 99th percentile, the pooled relative risk (RR) for CVD mortality was 1.14 (95% CI: 1.03, 1.26), with the country-specific RRs ranging from 1.04 (1.00, 1.09) in Norway to 1.24 (1.23, 1.26) in Germany. Heat effects were stronger among women [RRs (95% CIs) for women and men: 1.18 (1.08, 1.28) vs. 1.12 (1.00, 1.24)]. Greater heat vulnerability was observed in areas with high population density, high degree of urbanization, low green coverage, and high levels of fine particulate matter. CONCLUSION: This study provides evidence for the heat effects on CVD mortality in European countries using high-resolution data from both urban and rural areas. Besides, we identified individual- and area-level heat vulnerability factors. Our findings may facilitate the development of heat-health action plans to increase resilience to climate change.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Masculino , Feminino , Humanos , Temperatura Alta , Europa (Continente)/epidemiologia , Alemanha
2.
Front Public Health ; 11: 1173553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601227

RESUMO

Introduction: While there is consistent evidence on the effects of heat on workers' health and safety, the evidence on the resulting social and economic impacts is still limited. A scoping literature review was carried out to update the knowledge about social and economic impacts related to workplace heat exposure. Methods: The literature search was conducted in two bibliographic databases (Web of Science and PubMed), to select publications from 2010 to April 2022. Results: A total of 89 studies were included in the qualitative synthesis (32 field studies, 8 studies estimating healthcare-related costs, and 49 economic studies). Overall, consistent evidence of the socioeconomic impacts of heat exposure in the workplace emerges. Actual productivity losses at the global level are nearly 10% and are expected to increase up to 30-40% under the worst climate change scenario by the end of the century. Vulnerable regions are mainly low-latitude and low- and middle-income countries with a greater proportion of outdoor workers but include also areas from developed countries such as southern Europe. The most affected sectors are agriculture and construction. There is limited evidence regarding the role of cooling measures and changes in the work/rest schedule in mitigating heat-related productivity loss. Conclusion: The available evidence highlights the need for strengthening prevention efforts to enhance workers' awareness and resilience toward occupational heat exposure, particularly in low- and middle-income countries but also in some areas of developed countries where an increase in frequency and intensity of heat waves is expected under future climate change scenarios.


Assuntos
Exposição Ocupacional , Estresse Ocupacional , Humanos , Agricultura , Mudança Climática , Europa (Continente)
3.
Epidemiol Prev ; 47(3): 6-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455628

RESUMO

OBJECTIVES: to provide evidence of the health impacts of climate change in Italy. DESIGN: descriptive study. SETTING AND PARTICIPANTS: the indicators published in the 2022 Lancet Countdown report were adapted and refined to provide the most recent data relevant to Italy. MAIN OUTCOME MEASURES: twelve indicators were measured, organized within five sections mirroring those of the 2022 Lancet Countdown report: climate change impacts, exposures, and vulnerabilities; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. RESULTS: the overall picture depicted by the analysis of the 12 indicators reveals two key findings. First, climate change is already affecting the health of Italian populations, with effects not being uniform across the Country and with the most vulnerable groups being disproportionately at risk. Second, results showed that Italy's mitigation response has been partial, with major costs to human health. Accelerated climate change mitigation through energy system decarbonisation and shifts to more sustainable modes of transport could offer major benefits to health from cleaner air locally and from more active lifestyles, and to climate change from reduction of global warming. The decarbonisation of agricultural systems would similarly offer health co-benefits to Italian population. Conclusions: through accelerated action on climate change mitigation, Italy has the opportunity of delivering major and immediate health benefits to its population. Developing a key set of local indicators to monitor the impacts of climate change and evaluate response actions, in terms of adaptation and mitigation, can help support and enhance policy and action to fight climate changes.


Assuntos
Mudança Climática , Humanos , Itália
4.
Lancet Planet Health ; 7(4): e271-e281, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934727

RESUMO

BACKGROUND: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.


Assuntos
Temperatura Baixa , Avaliação do Impacto na Saúde , Temperatura Alta , Adulto , Humanos , Cidades , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA