Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACC Cardiovasc Imaging ; 15(7): 1193-1208, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798395

RESUMO

BACKGROUND: Direct assessment of the coronary microcirculation has long been hampered by the limited spatial and temporal resolutions of cardiac imaging modalities. OBJECTIVES: The purpose of this study was to demonstrate 3-dimensional (3D) coronary ultrasound localization microscopy (CorULM) of the whole heart beyond the acoustic diffraction limit (<20 µm resolution) at ultrafast frame rate (>1000 images/s). METHODS: CorULM was performed in isolated beating rat hearts (N = 6) with ultrasound contrast agents (Sonovue, Bracco), using an ultrasonic matrix transducer connected to a high channel-count ultrafast electronics. We assessed the 3D coronary microvascular anatomy, flow velocity, and flow rate of beating hearts under normal conditions, during vasodilator adenosine infusion, and during coronary occlusion. The coronary vasculature was compared with micro-computed tomography performed on the fixed heart. In vivo transthoracic CorULM was eventually assessed on anaesthetized rats (N = 3). RESULTS: CorULM enables the 3D visualization of the coronary vasculature in beating hearts at a scale down to microvascular structures (<20 µm resolution). Absolute flow velocity estimates range from 10 mm/s in tiny arterioles up to more than 300 mm/s in large arteries. Fitting to a power law, the flow rate-radius relationship provides an exponent of 2.61 (r2 = 0.96; P < 0.001), which is consistent with theoretical predictions and experimental validations of scaling laws in vascular trees. A 2-fold increase of the microvascular coronary flow rate is found in response to adenosine, which is in good agreement with the overall perfusion flow rate measured in the aorta (control measurement) that increased from 8.80 ± 1.03 mL/min to 16.54 ± 2.35 mL/min (P < 0.001). The feasibility of CorULM was demonstrated in vivo for N = 3 rats. CONCLUSIONS: CorULM provides unprecedented insights into the anatomy and function of coronary arteries at the microvasculature level in beating hearts. This new technology is highly translational and has the potential to become a major tool for the clinical investigation of the coronary microcirculation.


Assuntos
Vasos Coronários , Microscopia , Adenosina , Animais , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Microscopia/métodos , Valor Preditivo dos Testes , Ratos , Microtomografia por Raio-X
2.
Hepatology ; 67(1): 260-272, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28370257

RESUMO

Two-dimensional shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate-sized clinical trials. We aimed at running a larger-scale meta-analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D-SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D-SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D-SWE was 0.022-0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003-0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. CONCLUSION: 2D-SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head-to-head comparison between 2D-SWE and other imaging modalities to establish disease-specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260-272).


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Hepatite B Crônica/complicações , Hepatite C Crônica/complicações , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha , Bases de Dados Factuais , Progressão da Doença , Feminino , Seguimentos , Hepatite B Crônica/diagnóstico por imagem , Hepatite B Crônica/patologia , Hepatite C Crônica/diagnóstico por imagem , Hepatite C Crônica/patologia , Humanos , Imuno-Histoquímica , Cirrose Hepática/etiologia , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Curva ROC , Índice de Gravidade de Doença , Adulto Jovem
3.
Phys Med Biol ; 62(9): 3582-3598, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28225357

RESUMO

Hepatic steatosis is a common condition, the prevalence of which is increasing along with non-alcoholic fatty liver disease (NAFLD). Currently, the most accurate noninvasive imaging method for diagnosing and quantifying hepatic steatosis is MRI, which estimates the proton-density fat fraction (PDFF) as a measure of fractional fat content. However, MRI suffers several limitations including cost, contra-indications and poor availability. Although conventional ultrasound is widely used by radiologists for hepatic steatosis assessment, it remains qualitative and operator dependent. Interestingly, the speed of sound within soft tissues is known to vary slightly from muscle (1.575 mm · µs-1) to fat (1.450 mm · µs-1). Building upon this fact, steatosis could affect liver sound speed when the fat content increases. The main objectives of this study are to propose a robust method for sound speed estimation (SSE) locally in the liver and to assess its accuracy for steatosis detection and staging. This technique was first validated on two phantoms and SSE was assessed with a precision of 0.006 and 0.003 mm · µs-1 respectively for the two phantoms. Then a preliminary clinical trial (N = 17 patients) was performed. SSE results was found to be highly correlated with MRI proton density fat fraction (R 2 = 0.69) and biopsy (AUROC = 0.952) results. This new method based on the assessment of spatio-temporal properties of the local speckle noise for SSE provides an efficient way to diagnose and stage hepatic steatosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Ultrassonografia/métodos , Feminino , Humanos , Masculino
4.
Artigo em Inglês | MEDLINE | ID: mdl-18986866

RESUMO

One of the great challenges for understanding muscular diseases is to assess noninvasively the active and passive mechanical properties of the musculoskeletal system. In this paper we report the use of ultrafast ultrasound imaging to explore with a submillimeter resolution the behavior of the contracting tissues in vivo (biceps brachii). To image the contraction, which is a very brief phenomenon (100 ms), a recently designed ultrasound scanner prototype able to take up to 6000 frames/s was used. A very high frame rate from 1000 to 2500 frames/s was used to image the cross section plane of the muscle (transverse to fibers) enabling us to catch in real time the muscle contraction during a transient electrostimulation. Tissue velocities were obtained from radiofrequency based speckle tracking techniques and their profiles are discussed with respect to electrostimulation intensities and pulse repetition frequencies for different volunteers. Three-dimensional (3-D) very high frame rate movies were also acquired by repeating the experiment for different acquisition planes while triggering the imaging system with the electrostimulation device. The reconstructed 3-D velocity field allows the full localization of the contracting fibers bundle. This ultrasound technique, referred to as echo mechanomyography, offers new perspectives for in vivo and in situ noninvasive muscle diagnosis of an active contractile tissue.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Técnicas de Imagem por Elasticidade/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Interpretação de Imagem Assistida por Computador/instrumentação , Estresse Mecânico
5.
Ultrasound Med Biol ; 34(9): 1373-86, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18395961

RESUMO

This paper presents an initial clinical evaluation of in vivo elastography for breast lesion imaging using the concept of supersonic shear imaging. This technique is based on the combination of a radiation force induced in tissue by an ultrasonic beam and an ultrafast imaging sequence capable of catching in real time the propagation of the resulting shear waves. The local shear wave velocity is recovered using a time-offlight technique and enables the 2-D mapping of shear elasticity. This imaging modality is implemented on a conventional linear probe driven by a dedicated ultrafast echographic device. Consequently, it can be performed during a standard echographic examination. The clinical investigation was performed on 15 patients, which corresponded to 15 lesions (4 cases BI-RADS 3, 7 cases BI-RADS 4 and 4 cases BI-RADS 5). The ability of the supersonic shear imaging technique to provide a quantitative and local estimation of the shear modulus of abnormalities with a millimetric resolution is illustrated on several malignant (invasive ductal and lobular carcinoma) and benign cases (fibrocystic changes and viscous cysts). In the investigated cases, malignant lesions were found to be significantly different from benign solid lesions with respect to their elasticity values. Cystic lesions have shown no shear wave propagate at all in the lesion (because shear waves do not propage in liquid). These preliminary clinical results directly demonstrate the clinical feasibility of this new elastography technique in providing quantitative assessment of relative stiffness of breast tissues. This technique of evaluating tissue elasticity gives valuable information that is complementary to the B-mode morphologic information. More extensive studies are necessary to validate the assumption that this new mode potentially helps the physician in both false-positive and false-negative rejection.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador , Ultrassonografia Mamária/métodos , Adulto , Idoso , Cisto Mamário/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Elasticidade , Feminino , Humanos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Estresse Mecânico , Viscosidade , Adulto Jovem
6.
Neuroimage ; 32(2): 665-75, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16815713

RESUMO

In diffusion MRI, standard approaches for fibertract identification are based on algorithms that generate lines of coherent diffusion, currently known as tractography. A tract is then identified as a set of such lines selected on some criteria. In the present study, we investigate whether fibertract identification can be formulated as a segmentation task that recognizes a fibertract as a region where diffusion is intense and coherent. Indeed, we show that it is possible to segment efficiently well-known fibertracts with classical image processing methods provided that the problem is formulated in a five-dimensional space of position and orientation. As an example, we choose to adapt to this newly defined high-dimensional non-Euclidean space, called position orientation space, an algorithm based on the hidden Markov random field framework. Structures such as the cerebellar peduncles, corticospinal tract, association bundles can be identified and represented in three dimensions by a back projection technique similar to maximum intensity projection. Potential advantages and drawbacks as compared to classical tractography are discussed; for example, it appears that our formulation handles naturally crossing tracts and is not biased by human intervention.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Fibras Nervosas/diagnóstico por imagem , Vias Neurais/anatomia & histologia , Software , Mapeamento Encefálico , Tronco Encefálico/anatomia & histologia , Dominância Cerebral/fisiologia , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cadeias de Markov , Computação Matemática , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA