Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Neurol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771066

RESUMO

OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024.

2.
NMR Biomed ; 33(2): e4198, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765073

RESUMO

Diffusion-weighted 1 H-MRS (DW-MRS) allows for noninvasive investigation of the cellular compartmentalization of cerebral metabolites. DW-MRS applied to the congenital portal systemic shunt (PSS) mouse brain may provide specific insight into alterations of cellular restrictions associated with PSS in humans. At 14.1 T, adult male PSS and their age-matched healthy (Ctrl) mice were studied using DW-MRS covering b-values ranging from 0 to 45 ms/µm2 to determine the diffusion behavior of abundant metabolites. The remarkable sensitivity and spectral resolution, in combination with very high diffusion weighting, allowed for precise measurement of the diffusion properties of endogenous N-acetyl-aspartate, total creatine, myo-inositol, total choline with extension to glutamine and glutamate in mouse brains, in vivo. Most metabolites had comparable diffusion properties in PSS and Ctrl mice, suggesting that intracellular distribution space for these metabolites was not affected in the model. The slightly different diffusivity of the slow decaying component of taurine (0.015 ± 0.003 µm2 /ms in PSS vs 0.021 ± 0.002 µm2 /ms in Ctrl, P < 0.05) might support a cellular redistribution of taurine in the PSS mouse brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem de Difusão por Ressonância Magnética , Metaboloma , Derivação Portossistêmica Cirúrgica , Animais , Difusão , Masculino , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Probabilidade , Espectroscopia de Prótons por Ressonância Magnética
3.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28796319

RESUMO

Acetate has been proposed as an astrocyte-specific energy substrate for metabolic studies in the brain. The determination of the relative contribution of the intracellular and extracellular compartments to the acetate signal using diffusion-weighted magnetic resonance spectroscopy can provide an insight into the cellular environment and distribution volume of acetate in the brain. In the present study, localized 1 H nuclear magnetic resonance (NMR) spectroscopy employing a diffusion-weighted stimulated echo acquisition mode (STEAM) sequence at an ultra-high magnetic field (14.1 T) was used to investigate the diffusivity characteristics of acetate and N-acetylaspartate (NAA) in the rat brain in vivo during prolonged acetate infusion. The persistence of the acetate resonance in 1 H spectra acquired at very large diffusion weighting indicated restricted diffusion of acetate and was attributed to intracellular spaces. However, the significantly greater diffusion of acetate relative to NAA suggests that a substantial fraction of acetate is located in the extracellular space of the brain. Assuming an even distribution for acetate in intracellular and extracellular spaces, the diffusion properties of acetate yielded a smaller volume of distribution for acetate relative to water and glucose in the rat brain.


Assuntos
Acetatos/metabolismo , Encéfalo/metabolismo , Imagem de Difusão por Ressonância Magnética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Masculino , Metaboloma , Método de Monte Carlo , Probabilidade , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA