Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(11): 2211-2221, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35226017

RESUMO

Using a distinguishable-particle lattice model based on void-induced dynamics, we successfully reproduce the well-known linear relation between heat capacity and temperature at very low temperatures. The heat capacity is dominated by two-level systems formed due to the strong localization of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses. Similar but weaker localization at higher temperatures accounts for glass transition. The result supports the conventional two-level tunneling picture by revealing how two-level systems emerge from random particle interactions, which also cause glass transition. Our approach provides a unified framework for relating microscopic dynamics of glasses at room and cryogenic temperatures.

2.
Phys Rev E ; 104(2-1): 024131, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525549

RESUMO

The specific-heat capacity c_{v} of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger c_{v} and a more pronounced hysteresis for fragile glasses than for strong ones. Here we show that these experimental features, including the unusually large magnitude of c_{v} of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model incorporating a two-state picture of particle interactions. The large c_{v} in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA