Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Total Environ ; 934: 173283, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759927

RESUMO

Conventional concentration-oriented approaches for nitrate risk diagnosis only provide overall risk levels without identifying risk values of individual sources or sources accountable for potential health risks. Therefore, a hybrid model combining the end-member mixing model tool on Excel™ (EMMTE) with human health risk assessment (HHRA) was developed to assess the source-oriented health risks for groundwater nitrate, particularly in the Poyang Lake Plain (PLP) region. The results indicated that the EMMTE and the Bayesian stable isotope mixing model (MixSIAR) exhibited remarkable consistency in source apportionment of groundwater nitrate. The source contribution of groundwater nitrate in PLP was related to land use types, hydrogeological conditions, and soil properties. Notably, manure and sewage sources, contributing up to 53.4 %, represented the largest nitrate pollution sources, with a significant contribution of soil nitrogen and nitrogen fertilizers. The non-carcinogenic risk for four potential sources was below the acceptable threshold of 1. Given the factors including rainfall dilution and economic development, attention should be directed towards mitigating the health risks posed by manure and sewage. This study can verify the efficacy of EMMTE in source apportionment and offer valuable insights for decision-makers to regulate the largest sources of nitrate contamination and enhance groundwater management efficiency.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental/métodos , Humanos , Teorema de Bayes , China
2.
J Environ Manage ; 358: 120853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608578

RESUMO

Identifying high-risk factors (heavy metals (HMs) and pollution sources) by coupling receptor models and health risk assessment model (HRA) is a novel approach within the field of risk assessment. However, this coupled model ignores the contribution of spatial differentiation to high-risk factors, resulting in the assessment being subjective. Taking Dongting Plain (DTP) as an example, a coupling framework by jointly using the positive matrix factorization model (PMF), HRA, Monte Carlo simulation, and geo-detector was developed, aiming to identify high-risk factors in groundwater, and further explore key environmental variables influencing the spatial heterogeneity of high-risk factors. The results showed that at least 82.86 % of non-carcinogenic risks and 97.41 % of carcinogenic risks were unacceptable for people of all ages, especially infants and children. According to the relationships among HMs, pollution sources, and health risks, As and natural sources were defined as high-risk HMs and sources, respectively. The interactions among Holocene thickness, oxidation-reduction potential, and dissolved organic carbon emerged as the primary drivers of spatial variability in high-risk factors, with their combined explanatory power reaching up to 74%. This proposed framework provides a scientific reference for future studies and a practical reference for environmental authorities in developing effective pollution management measures.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Água Subterrânea/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Fatores de Risco , Medição de Risco , Monitoramento Ambiental , Humanos , Método de Monte Carlo
3.
Environ Geochem Health ; 43(3): 1257-1271, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32803736

RESUMO

Selenium (Se) is an essential trace element within human beings that hold with crucial biological functions. Investigating the complex origin of soil Se is of great importance to scientifically approach the land use of Se-rich land use, and the respective promotion of regional economic development. In this study, 160 soil samples from 10 profiles in farmland and woodland were collected in Hailun city, which is a typical black soil region in Northeast China, in order to characterize the distribution and speciation of Se in the black soil, and to identify the origin of soil Se. The total selenium content in the soil ranges from 0.045 to 0.444 µg g-1, with an average selenium content in black soil (0.318 µg g-1) of three times greater than that found in the yellow-brown soil (0.114 µg g-1). The land-use type has a significant influence on the distribution of selenium in the black soil. Moreover, Se and heavy metals have a significant (positive or negative) correlation, in which TOC plays an important role. The black soil presents a consistent REE distribution pattern with underlying yellow-brown soil indicating black soil originates from yellow-brown soil. REE geostatistical analysis suggests that the soil Se partly originates from shale weathering and enriches in black soil. Moreover, elemental geochemical analysis and XRD results show that the paleoclimate change from humid and warm to dry and cold is favorable for organic matter accumulation, resulting in less leaching and enhanced adsorption of selenium into the black soil.


Assuntos
Selênio/análise , Solo/química , China , Metais Pesados/análise , Poluentes do Solo/análise , Oligoelementos/análise
4.
Sci Total Environ ; 721: 137769, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172122

RESUMO

Urinary Stone Disease (USD) or urolithiasis has plagued humans for centuries, and its prevalence has increased over the past few decades. Although USD pathology could vary significantly among individuals, previous qualitative assessments using limited survey data demonstrated that the prevalence of USD might exhibit a distinctive geographical distribution (the so-called "stone belt"), without any knowledge about the characteristics and contribution factors of the belt. Here, we argue that the spatial distribution of USD can at least partly be explained by geogenic and climatic factors, as it correlates with the ambient geo-environmental conditions modulated by lithology/mineralogy, water quality and climate. Using a Bayesian risk model, we assessed the global risk of USD based on updated big data of four key geogenic factors: phosphorite mines (inventory >1600 points), carbonate rocks (at the scale of 1:40 million), Ca2+/Mg2+ molar ratio of river water (1.27 million samples distributed over 17,000 sampling locations), and mean air temperature (0.5o × 0.5° resolution) representing the climate. We quantitatively identified possible contributions of the factors to USD and delineated the regions with the high USD risk which stretched from southern North America, via the Mediterranean region, northeastern Africa, southern China to Australia, and roughly coincide with the world's major areas of carbonate outcropping. Under current climate conditions, the areas with the probabilities for the USD prevalence of ≥50% and ≥30% covered 3.7% and 20% of the Earth's land surface, respectively. By the end of the 21st century, such total areas could rise to 4.4% and 25% as a result of global warming. Since the USD data used in this study were quite heterogeneous, the prediction results needed further calibration with additional high-quality prevalence data in the future.


Assuntos
Cálculos Urinários , África , Austrália , Teorema de Bayes , China , Mudança Climática , Humanos , Região do Mediterrâneo
5.
Ecotoxicol Environ Saf ; 135: 236-242, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27744193

RESUMO

The occurrence of 14 antibiotics (fluoroquinolones, tetracyclines, macrolides and sulfonamides) in groundwater and surface water at Jianghan Plain was investigated during three seasons. The total concentrations of target compounds in the water samples were higher in spring than those in summer and winter. Erythromycin was the predominant antibiotic in surface water samples with an average value of 1.60µg/L, 0.772µg/L and 0.546µg/L respectively in spring, summer and winter. In groundwater samples, fluoroquinolones and tetracyclines accounted for the dominant proportion of total antibiotic residues. The vertical distributions of total antibiotics in groundwater samples from three different depths boreholes (10m, 25m, and 50m) exhibited irregular fluctuations. Consistently decreasing of antibiotic residues with increasing of depth was observed in four (G01, G02, G03 and G05) groundwater sampling sites over three seasons. However, at the sampling sites G07 and G08, the pronounced high concentrations of total antibiotic residues were detected in water samples from 50m deep boreholes instead of those at upper aquifer in winter sampling campaign, with the total concentrations of 0.201µg/L and 0.100µg/L respectively. The environmental risks posed by the 14 antibiotics were assessed by using the methods of risk quotient and mixture risk quotient for algae, daphnids and fish in surface water and groundwater. The results suggested that algae might be the aquatic organism most sensitive to the antibiotics, with the highest risk levels posed by erythromycin in surface water and by ciprofloxacin in groundwater among the 14 antibiotics. In addition, the comparison between detected antibiotics in groundwater samples and the reported effective concentrations of antibiotics on denitrification by denitrifying bacteria, indicating this biogeochemical process driven by microorganisms won't be inhibitory influenced by the antibiotic residues in groundwater.


Assuntos
Antibacterianos/análise , Água Doce/química , Água Subterrânea/química , Poluentes Químicos da Água/análise , Água/química , Animais , China , Monitoramento Ambiental , Fluoroquinolonas/análise , Macrolídeos/análise , Medição de Risco , Estações do Ano , Sulfonamidas/análise , Tetraciclinas/análise
6.
J Contam Hydrol ; 154: 1-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24035830

RESUMO

An effective and low-cost in-situ geological filtration system was developed to treat arsenic-contaminated groundwater in remote rural areas. Hangjinhouqi in western Hetao Plain of Inner Mongolia, China, where groundwater contains a high arsenic concentration, was selected as the study area. Fe-mineral and limestone widely distributed in the study area were used as filter materials. Batch and column experiments as well as field tests were performed to determine optimal filtration parameters and to evaluate the effectiveness of the technology for arsenic removal under different hydrogeochemical conditions. A mixture containing natural Fe-mineral (hematite and goethite) and limestone at a mass ratio of 2:1 was found to be the most effective for arsenic removal. The results indicated that Fe-mineral in the mixture played a major role for arsenic removal. Meanwhile, limestone buffered groundwater pH to be conducive for the optimal arsenic removal. As(III) adsorption and oxidation by iron mineral, and the formation of Ca-As(V) precipitation with Ca contributed from limestone dissolution were likely mechanisms leading to the As removal. Field demonstrations revealed that a geological filter bed filled with the proposed mineral mixture reduced groundwater arsenic concentration from 400 µg/L to below 10 µg/L. The filtration system was continuously operated for a total volume of 365,000L, which is sufficient for drinking water supplying a rural household of 5 persons for 5 years at a rate of 40 L per person per day.


Assuntos
Arsênio/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carbonato de Cálcio/química , Análise Custo-Benefício , Recuperação e Remediação Ambiental/economia , Compostos Férricos/química , Filtração/métodos , Água Subterrânea/química , Compostos de Ferro/química , Minerais/química , Purificação da Água/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA