Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Chem ; 69(11): 1227-1237, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725906

RESUMO

It is important for external quality assessment materials (EQAMs) to be commutable with clinical samples; i.e., they should behave like clinical samples when measured using end-user clinical laboratory in vitro diagnostic medical devices (IVD-MDs). Using commutable EQAMs makes it possible to evaluate metrological traceability and/or equivalence of results between IVD-MDs. The criterion for assessing commutability of an EQAM between 2 IVD-MDs is that its result should be within the prediction interval limits based on the statistical distribution of the clinical sample results from the 2 IVD-MDs being compared. The width of the prediction interval is, among other things, dependent on the analytical performance characteristics of the IVD-MDs. A presupposition for using this criterion is that the differences in nonselectivity between the 2 IVD-MDs being compared are acceptable. An acceptable difference in nonselectivity should be small relative to the analytical performance specifications used in the external quality assessment scheme. The acceptable difference in nonselectivity is used to modify the prediction interval criterion for commutability assessment. The present report provides recommendations on how to establish a criterion for acceptable commutability for EQAMS, establish the difference in nonselectivity that can be accepted between IVD-MDs, and perform a commutability assessment. The report also contains examples for performing a commutability assessment of EQAMs.


Assuntos
Serviços de Laboratório Clínico , Ensaio de Proficiência Laboratorial , Humanos , Padrões de Referência , Kit de Reagentes para Diagnóstico
2.
Clin Chem ; 69(3): 262-272, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644921

RESUMO

BACKGROUND: Elevated concentrations of lipoprotein(a) [Lp(a)] are directly related to an increased risk of cardiovascular diseases, making it a relevant biomarker for clinical risk assessment. However, the lack of global standardization of current Lp(a) measurement procedures (MPs) leads to inconsistent patient care. The International Federation for Clinical Chemistry and Laboratory Medicine working group on quantitating apolipoproteins by mass spectrometry (MS) aims to develop a next-generation SI (International system of units)-traceable reference measurement system consisting of a MS-based, peptide-calibrated reference measurement procedure (RMP) and secondary serum-based reference materials (RMs) certified for their apolipoprotein(a) [apo(a)] content. To reach measurement standardization through this new measurement system, 2 essential requirements need to be fulfilled: a sufficient correlation among the MPs and appropriate commutability of future serum-based RMs. METHODS: The correlation among the candidate RMP (cRMP) and immunoassay-based MPs was assessed by measuring a panel of 39 clinical samples (CS). In addition, the commutability of 14 different candidate RMs was investigated. RESULTS: Results of the immunoassay-based MPs and the cRMPs demonstrated good linear correlations for the CS but some significant sample-specific differences were also observed. The results of the commutability study show that RMs based on unspiked human serum pools can be commutable with CS, whereas human pools spiked with recombinant apo(a) show different behavior compared to CS. CONCLUSIONS: The results of this study show that unspiked human serum pools are the preferred candidate secondary RMs in the future SI-traceable Lp(a) Reference Measurement System.


Assuntos
Química Clínica , Lipoproteína(a) , Humanos , Imunoensaio , Espectrometria de Massas , Padrões de Referência
3.
Euro Surveill ; 27(42)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36268736

RESUMO

BackgroundCountries worldwide are focusing to mitigate the ongoing SARS-CoV-2 pandemic by employing public health measures. Laboratories have a key role in the control of SARS-CoV-2 transmission. Serology for SARS-CoV-2 is of critical importance to support diagnosis, define the epidemiological framework and evaluate immune responses to natural infection and vaccine administration.AimThe aim of this study was the assessment of the actual capability among laboratories involved in sero-epidemiological studies on COVID-19 in EU/EEA and EU enlargement countries to detect SARS-CoV-2 antibodies through an external quality assessment (EQA) based on proficiency testing.MethodsThe EQA panels were composed of eight different, pooled human serum samples (all collected in 2020 before the vaccine roll-out), addressing sensitivity and specificity of detection. The panels and two EU human SARS-CoV-2 serological standards were sent to 56 laboratories in 30 countries.ResultsThe overall performance of laboratories within this EQA indicated a robust ability to establish past SARS-CoV-2 infections via detection of anti-SARS-CoV-2 antibodies, with 53 of 55 laboratories using at least one test that characterised all EQA samples correctly. IgM-specific test methods provided most incorrect sample characterisations (24/208), while test methods detecting total immunoglobulin (0/119) and neutralising antibodies (2/230) performed the best. The semiquantitative assays used by the EQA participants also showed a robust performance in relation to the standards.ConclusionOur EQA showed a high capability across European reference laboratories for reliable diagnostics for SARS-CoV-2 antibody responses. Serological tests that provide robust and reliable detection of anti-SARS-CoV-2 antibodies are available.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Anticorpos Antivirais , Sensibilidade e Especificidade , Imunoglobulina M , Anticorpos Neutralizantes
4.
Clin Chem ; 64(8): 1193-1202, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29903873

RESUMO

BACKGROUND: Measurement standardization of the catalytic concentration of α-amylase in serum is based on 3 pillars: the primary reference measurement procedure (PRMP), reference laboratories, and suitable certified reference materials (CRMs). Commutability is a prerequisite when using a CRM for calibration and trueness control of routine methods or for value transfer from the PRMP to end-user calibrators of routine methods through a calibration hierarchy. METHODS: We performed a commutability study with 30 serum pools and 5 candidate reference materials (RMs) for pancreatic α-amylase using an automated version of the PRMP and 5 different routine methods. Four candidate RMs had an artificial matrix, each with a different composition, and 1 candidate RM was based on human serum. Data were analyzed according to a linear regression analysis with prediction interval as described in the Clinical and Laboratory Standards Institute guideline EP30-A and a difference in bias analysis as described in the recommendations of the IFCC Working Group on Commutability. RESULTS: The commutability profile of the 4 candidate RMs with an artificial matrix was variable. Only 1 candidate RM, with human serum albumin in the matrix, showed a good profile like that of the candidate RM based on serum. The comparison of both commutability assessment approaches indicated some differences because of inconclusive results for the difference in bias approach, suggesting a large uncertainty on the commutability assessment. CONCLUSIONS: A CRM for pancreatic amylase in an artificial matrix can be commutable for routine methods using the same substrate as the PRMP, but the matrix composition is crucial.


Assuntos
alfa-Amilases Pancreáticas/sangue , alfa-Amilases Pancreáticas/normas , Humanos , Padrões de Referência
5.
Clin Chem ; 64(9): 1296-1307, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29903874

RESUMO

BACKGROUND: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS: We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS: Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%-8% and 5%-10%, respectively). CONCLUSIONS: This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


Assuntos
Reação em Cadeia da Polimerase/métodos , Medicina de Precisão , Variações do Número de Cópias de DNA , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA