Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Phys Med ; 70: 118-122, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32007600

RESUMO

AIM: Nowadays, no Quality Indicators (QI) have been proposed for Hyperthermia treatments. Starting from radiotherapy experience, the aim of this work is to adapt radiotherapy indicators to Hyperthermia and to propose a new specific set of QI in Hyperthermia field. MATERIAL AND METHODS: At first, radiotherapy quality indicators published in literature have been adapted to hyperthermia setting. Moreover, new specific indicators for the treatment of hyperthermia have been defined. To obtain the standard reference values of quality indicators, a questionnaire was sent to 7 Italian hyperthermia Institutes with a list of questions on physical and clinical hyperthermia treatment in order to highlight the different therapeutic approaches. RESULTS: Three structure, five process and two outcome QI were selected. It has been possible to adapt seven indicators from radiotherapy, while three indicators have been defined as new specific indicators for hyperthermia. Average values used as standard reference values have been obtained and proposed. CONCLUSION: The survey performed on 7 Italian centres allowed to derive the standard reference value for each indicator. The proposed indicators are available to be investigated and applied by a larger number of Institutes in which hyperthermia treatment is performed in order to monitor the operational procedures and to confirm or modify the reference standard value derived for each indicator.


Assuntos
Hipertermia/terapia , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Indicadores de Qualidade em Assistência à Saúde/estatística & dados numéricos , Política de Saúde , Humanos , Itália , Inquéritos e Questionários , Resultado do Tratamento
2.
Phys Med Biol ; 58(22): 8099-120, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24200697

RESUMO

Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 10(8) primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3­4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image-based dosimetry in nuclear medicine.


Assuntos
Imageamento Tridimensional/métodos , Método de Monte Carlo , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Ar , Osso e Ossos/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Radiometria , Água
3.
Phys Med Biol ; 57(2): 517-33, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22217735

RESUMO

The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it.


Assuntos
Bases de Dados Factuais , Radioisótopos/uso terapêutico , Radioterapia/métodos , Osso e Ossos/efeitos da radiação , Elétrons/uso terapêutico , Humanos , Método de Monte Carlo , Fótons/uso terapêutico , Radiometria , Reprodutibilidade dos Testes
4.
Med Phys ; 38(7): 3944-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21858991

RESUMO

PURPOSE: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. METHODS: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. FLUKA outcomes have been compared to PENELOPE v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (ETRAN, GEANT4, MCNPX) has been done. Maximum percentage differences within 0.8.RCSDA and 0.9.RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8.X90 and 0.9.X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9.RCSDA and 0.9.X90 for electrons and isotopes, respectively. RESULTS: Concerning monoenergetic electrons, within 0.8.RCSDA (where 90%-97% of the particle energy is deposed), FLUKA and PENELOPE agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between FLUKA and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9.X90, FLUKA and PENELOPE differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of FLUKA DPKS are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution. CONCLUSIONS: FLUKA provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.


Assuntos
Método de Monte Carlo , Neoplasias/fisiopatologia , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Algoritmos , Animais , Simulação por Computador , Elétrons , Humanos , Modelos Biológicos , Dosagem Radioterapêutica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA