Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Cardiovasc Med ; 9: 983003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061555

RESUMO

Background: While the importance of invasive physiological assessment (IPA) to choose coronary lesions to be treated is ascertained, its role after PCI is less established. We evaluated feasibility and efficacy of Physiology-guided PCI in the everyday practice in a retrospective registry performed in a single high-volume and "physiology-believer" center. Materials and methods: The PROPHET-FFR study (NCT05056662) patients undergoing an IPA in 2015-2020 were retrospectively enrolled in three groups: Control group comprising patients for whom PCI was deferred based on a IPA; Angiography-Guided PCI group comprising patients undergoing PCI based on an IPA but without a post-PCI IPA; Physiology-guided PCI group comprising patients undergoing PCI based on an IPA and an IPA after PCI, followed by a physiology-guided optimization, if indicated. Optimal result was defined by an FFR value ≥ 0.90. Results: A total of 1,322 patients with 1,591 lesions were available for the analysis. 893 patients (67.5%) in Control Group, 249 patients (18.8%) in Angiography-guided PCI Group and 180 patients (13.6%) in Physiology-guided PCI group. In 89 patients a suboptimal functional result was achieved that was optimized in 22 cases leading to a "Final FFR" value of 0.90 ± 0.04 in Angiography-Guided PCI group. Procedural time, costs, and rate of complications were similar. At follow up the rate of MACEs for the Physiology-guided PCI group was similar to the Control Group (7.2% vs. 8.2%, p = 0.765) and significantly lower than the Angiography-guided PCI Group (14.9%, p < 0.001), mainly driven by a reduction in TVRs. Conclusion: "Physiology-guided PCI" is a feasible strategy with a favorable impact on mid-term prognosis. Prospective studies using a standardized IPA are warrant to confirm these data.

2.
Braz. arch. biol. technol ; Braz. arch. biol. technol;65: e22200784, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364455

RESUMO

Abstract Nanoscale biomaterials are commonly used in a wide range of biomedical applications such as bone graft substitutes, gene delivery systems, and biologically active agents. On the other hand, the cytotoxic potential of these particles hasn't yet been studied comprehensively to understand whether or not they exert any negative impact on the cellular structures. Here, we undertook the synthesis of beta-tricalcium phosphate (ß-TCP) and biphasic tricalcium phosphate (BCP) nanoparticles (NPs) and determine their concentration-dependent toxic effects in human fetal osteoblastic (hFOB 1.19) cell line. Firstly, BCP and β-TCP were synthesized using a water-based precipitation technique and characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, and Transmission Electron Microscopy (TEM). The cytological effects of β-TCP and BCP at different concentrations (0-640 ppm) were evaluated by using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The total oxidative status (TOS) parameter was used for investigating oxidative stress potentials of the NPs. In addition, the study assessed the DNA damage product 8-hydroxy-2′-deoxyguanosine (8-Oxo-dG) level in hFOB 1.19 cell cultures. The results indicated that the β-TCP (above 320 ppm) and BCP (above 80 ppm) NPs exhibited cytotoxicity effects on high concentrations. It was also observed that the oxidative stress increased relatively as the concentrations of NPs increased, aligning with the cytotoxicity results. However, the NPs concentrations of 160 ppm and above increased the level of 8-OH-dG. Consequently, there is a need for more systematic in vivo and in vitro approaches to the toxic effects of both nanoparticles.

3.
Int Orthop ; 43(1): 71-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284002

RESUMO

PURPOSE: Bone remodeling around the femoral component after total hip arthroplasty (THA) is considered to be an important factor in long-term stability and seems to be strictly related to the stem design, coating, and fixation. Stress shielding, micro-movement, and high intra-articular fluid pressure might activate macrophages and osteoclasts, causing progressive bone density decreases. Here we analyze the bone mineral density (BMD) around a cementless femoral stem during a 20-year period to better understand the adaptive bone changes around such implants during long-term follow-up. METHODS: In this retrospective study, 14 patients treated by THA were reviewed from a cohort of 84. Clinical evaluation with Harris Hip Score and radiographic assessment were performed throughout a 20-year follow-up. To evaluate the bone remodeling around the stem, we monitored the femoral BMD in four regions of interest with a dual-energy X-ray absorptiometry (DEXA) post-operatively and at one, two, three, five and 20 years of follow-up. RESULTS: The main BMD changes between the post-operative examination and the 20-year follow-up varied between + 11.19% and + 24.30%. Patients with signs of loosening, low Harris Hip Scores, and pain showed decreasing BMD values. CONCLUSIONS: The correlation between the clinical result and BMD values could suggest DEXA results as a predictor of implant loosening or longevity.


Assuntos
Absorciometria de Fóton , Artroplastia de Quadril , Densidade Óssea/fisiologia , Remodelação Óssea/fisiologia , Prótese de Quadril/efeitos adversos , Osteoartrite do Quadril/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Fêmur/cirurgia , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/cirurgia , Período Pós-Operatório , Desenho de Prótese , Falha de Prótese , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA