Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 113(5): 887-903, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628472

RESUMO

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best strategies to control these losses is through breeding for disease resistance. One barrier to the identification of resistance genes is the quantification of disease severity, which is typically based on the determination of a subjective score by a human observer. We hypothesized that image-based, non-destructive measurements of plant morphology over an extended period after pathogen infection would capture subtle quantitative differences between genotypes, and thus enable identification of new disease resistance loci. To test this, we inoculated a genetically diverse biparental mapping population of tomato (Solanum lycopersicum) with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease. We acquired over 40 000 time-series images of disease progression in this population, and developed an image analysis pipeline providing a suite of 10 traits to quantify bacterial wilt disease based on plant shape and size. Quantitative trait locus (QTL) analyses using image-based phenotyping for single and multi-traits identified QTLs that were both unique and shared compared with those identified by human assessment of wilting, and could detect QTLs earlier than human assessment. Expanding the phenotypic space of disease with image-based, non-destructive phenotyping both allowed earlier detection and identified new genetic components of resistance.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Progressão da Doença
2.
New Phytol ; 193(2): 494-503, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22077724

RESUMO

• Transgenomics is the process of introducing genomic clones from a donor species into a recipient species and then screening the resultant transgenic lines for phenotypes of interest. This method might allow us to find genes involved in the evolution of phenotypic differences between species as well as genes that have the potential to contribute to reproductive isolation: potential speciation genes. • More than 1100 20-kbp genomic clones from Leavenworthia alabamica were moved into Arabidopsis thaliana by transformation. After screening a single primary transformant for each line, clones associated with mutant phenotypes were tested for repeatability and co-segregation. • We found 84 clones with possible phenotypic effects, of which eight were repeatedly associated with the same phenotype. One clone, 11_11B, co-segregated with a short fruit phenotype. Further study showed that 11_11B affects seed development, with as much as one-third of the seeds aborted in some fruit. • Transgenomics is a viable strategy for discovering genes of evolutionary interest. We identify methods to reduce false positives and false negatives in the future. 11_11B can be viewed as a potential speciation gene, illustrating the value of transgenomics for studying the molecular basis of reproductive isolation.


Assuntos
Arabidopsis/genética , Evolução Biológica , Brassicaceae/genética , Genes de Plantas/genética , Genômica/métodos , Filogenia , Arabidopsis/crescimento & desenvolvimento , Brassicaceae/crescimento & desenvolvimento , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Frutas/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Modelos Biológicos , Fenótipo , Sementes/crescimento & desenvolvimento , Especificidade da Espécie , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA