Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Radiol ; 96(1149): 20200448, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393533

RESUMO

OBJECTIVE: The study explores the application value of three-dimensional arterial spin labeling magnetic resonance imaging (3D pCASL) in early assessment of radiation encephalopathy (REP) in patients with nasopharyngeal carcinoma (NPC). METHODS: A retrospective analysis of 39 cases of NPC was performed. Routine enhanced MRI scan and 3D pCASL imaging were used to examine the apparent diffusion coefficient (ADC) and brain blood flow (CBF) before and after treatment with intensity-modulated radiotherapy (IMRT). Dosimetric analysis of irradiation was performed. Receiver operating characteristic curve (ROC) was used to analyze diagnostic performance of two imaging methods. RESULTS: There was no statistically significant difference between the two methods for the measurement of temporal white matter ADC, but statistically significant difference was found in CBF. 3D pCASL imaging showed more sensitivity, specificity and higher accuracy than conventional MRI enhanced scan in showing REP. The maximum dose of the temporal lobe was at the enhanced area. CONCLUSION: The present study demonstrates that 3D pCASL scan at month 3 can reflect blood flow perfusion differences in NPC patients after IMRT and can accurately assess the possibility of REP at early stage. Enhanced areas have a higher probability of REP than the surrounding areas. ADVANCES IN KNOWLEDGE: There is few magnetic resonance angiography studies used to evaluate arterial circulation on its application on potential REP after radiotherapy for NPC. In our study, we evaluate the application value of 3D pCASL in the early assessment of potential REP in patients with NPC after radiotherapy. The study was to provide an improved understanding of the early specific characteristics on MRI imaging and evolution of potential radiation encephalopathy using 3D pCASL technique, which can quantitatively evaluate the changes of blood flow in tissues at early stage and help to diagnose and treat potential radiation encephalopathy as early as possible.


Assuntos
Encefalopatias , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/radioterapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/radioterapia , Marcadores de Spin
2.
Lab Chip ; 22(18): 3436-3452, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35972195

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19), due to the novel coronavirus (SARS-CoV-2), has created an unprecedented threat to the global health system, especially in resource-limited areas. This challenge shines a spotlight on the urgent need for a point-of-care (POC) quantitative real-time PCR (qPCR) test for sensitive and rapid diagnosis of viral infections. In a POC system, a closed, single-use, microfluidic cartridge is commonly utilized for integration of nucleic acid preparation, PCR amplification and florescence detection. But, most current cartridge systems often involve complicated nucleic acid extraction via active pumping that relies on cumbersome external hardware, causing increases in system complexity and cost. In this work, we demonstrate a gravity-driven cartridge design for an integrated viral RNA/DNA diagnostic test that does not require auxiliary hardware for fluid pumping due to adopted extraction-free amplification. This microfluidic cartridge only contains two reaction chambers for nucleic acid lysis and amplification respectively, enabling a fast qPCR test in less than 30 min. This gravity-driven pumping strategy can help simplify and minimize the microfluidic cartridge, thus enabling high-throughput (up to 12 test cartridges per test) molecular detection via a small cartridge readout system. Thus, this work addresses the scalability limitation of POC molecular testing and can be run in any settings. We verified the analytical sensitivity and specificity of the cartridge testing for respiratory pathogens and sexually transmitted diseases using SARS-CoV-2, influenza A/B RNA samples, and human papillomavirus 16/18 DNA samples. Our cartridge system exhibited a comparable detection performance to the current gold standard qPCR instrument ABI 7500. Moreover, our system showed very high diagnostic accuracy for viral RNA/DNA detection that was well validated by ROC curve analysis. The sample-to-answer molecular testing system reported in this work has the advantages of simplicity, rapidity, and low cost, making it highly promising for prevention and control of infectious diseases in poor-resource areas.


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Teste para COVID-19 , DNA Viral/genética , Papillomavirus Humano 16/genética , Humanos , Influenza Humana/diagnóstico , Microfluídica , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA