Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 849: 157828, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934022

RESUMO

External Thermal Insulation Composite Systems (ETICS) are multilayer solutions which provide an enhanced thermal performance to the building envelope. However, significant anomalies can be detected on ETICS facades, in some cases shortly after the application of these systems. This study intends to evaluate and compare the durability of six commercially available ETICS after two years of outdoor exposure at both urban and maritime conditions in Portugal. The systems were characterized by means of non-destructive testing (i.e., visual and microscopic assessment, water transport properties, thermal conductivity, surface roughness), thus allowing to evaluate the performance loss throughout natural aging. The bio-susceptibility and aesthetic properties (color and gloss) were also investigated. Results showed that the performance and durability of the complete system is significantly affected by the rendering system formulation. The lime-based specimens obtained the highest rate of mold development after one year of aging in a maritime environment, becoming considerably darker and with lower surface gloss. Fungal analysis of this darkish stained area indicated the presence of mold species of the genera Alternaria, Didymella, Cladosporium and Epicoccum, and yeasts of the genera Vishniacozyma and Cystobasidium. An increase of both capillary water absorption and water vapor permeability was also registered for the aged lime-based specimens. Acrylic-based systems obtained lower capillary water absorption after aging and greater dirt deposition on their surfaces, especially in urban conditions. These systems had also higher color variation and surface gloss decrease and slightly higher mold growth, when compared with those aged in a maritime environment. Finally, no mold growth was detected on the silicate-based specimens after two years of aging. However, these specimens obtained higher capillary water absorption and lower vapor permeability after aging, possibly leading to moisture accumulation within the system. Results contribute towards the development of ETICS with enhanced performance and durability.


Assuntos
Resinas Compostas , Vapor , Compostos de Cálcio , Teste de Materiais , Óxidos , Propriedades de Superfície
2.
Microb Ecol ; 60(1): 55-68, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20440490

RESUMO

This study is aimed to assess the formation of photosynthetic biofilms on and within different natural stone materials, and to analyse their biogeophysical and biogeochemical deterioration potential. This was performed by means of artificial colonisation under laboratory conditions during 3 months. Monitoring of microbial development was performed by image analysis and biofilm biomass estimation by chlorophyll extraction technique. Microscopy investigations were carried out to study relationships between microorganisms and the mineral substrata. The model applied in this work corroborated a successful survival strategy inside endolithic microhabitat, using natural phototrophic biofilm cultivation, composed by cyanobacteria and algae, which increased intrinsic porosity by active mineral dissolution. We observed the presence of mineral-like iron derivatives (e.g. maghemite) around the cells and intracellularly and the precipitation of hausmannite, suggesting manganese transformations related to the biomineralisation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Materiais de Construção/microbiologia , Cianobactérias/crescimento & desenvolvimento , Eucariotos/crescimento & desenvolvimento , Biodegradação Ambiental , Clorofila/análise , Materiais de Construção/análise , Microscopia Eletrônica de Varredura , Fotossíntese , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA