Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 14(1): e1005906, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29338006

RESUMO

In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak to strong in successive beats despite a constant heart rate. These cardiac alternans can be caused by the instability of membrane potential (Vm) due to steep AP duration (APD) restitution (Vm-driven alternans), instability of Cai cycling (Ca2+-driven alternans), or both, and may be modulated by functional coupling between clustered CaV1.2 (e.g. cooperative gating). Here, mathematical analysis and computational models were used to determine how changes in the strength of cooperative gating between LTCCs may impact membrane voltage and intracellular Ca2+ dynamics in the heart. We found that increasing the degree of coupling between LTCCs increases the amplitude of Ca2+ currents (ICaL) and prolongs AP duration (APD). Increased AP duration is known to promote cardiac alternans, a potentially arrhythmogenic substrate. In addition, our analysis shows that increasing the strength of cooperative activation of LTCCs makes the coupling of Ca2+ on the membrane voltage (Cai→Vm coupling) more positive and destabilizes the Vm-Cai dynamics for Vm-driven alternans and Cai-driven alternans, but not for quasiperiodic oscillation. These results suggest that cooperative gating of LTCCs may have a major impact on cardiac excitation-contraction coupling, not only by prolonging APD, but also by altering Cai→Vm coupling and potentially promoting cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Contração Miocárdica , Miócitos Cardíacos/citologia , Potenciais de Ação , Animais , Cálcio/química , Sinalização do Cálcio , Biologia Computacional , Simulação por Computador , Acoplamento Excitação-Contração , Frequência Cardíaca , Cadeias de Markov , Modelos Biológicos , Miocárdio/citologia , Distribuição Normal , Linguagens de Programação , Coelhos , Retículo Sarcoplasmático/metabolismo , Processos Estocásticos
2.
Elife ; 42015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25714924

RESUMO

In the heart, reliable activation of Ca(2+) release from the sarcoplasmic reticulum during the plateau of the ventricular action potential requires synchronous opening of multiple CaV1.2 channels. Yet the mechanisms that coordinate this simultaneous opening during every heartbeat are unclear. Here, we demonstrate that CaV1.2 channels form clusters that undergo dynamic, reciprocal, allosteric interactions. This 'functional coupling' facilitates Ca(2+) influx by increasing activation of adjoined channels and occurs through C-terminal-to-C-terminal interactions. These interactions are initiated by binding of incoming Ca(2+) to calmodulin (CaM) and proceed through Ca(2+)/CaM binding to the CaV1.2 pre-IQ domain. Coupling fades as [Ca(2+)]i decreases, but persists longer than the current that evoked it, providing evidence for 'molecular memory'. Our findings suggest a model for CaV1.2 channel gating and Ca(2+)-influx amplification that unifies diverse observations about Ca(2+) signaling in the heart, and challenges the long-held view that voltage-gated channels open and close independently.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Ativação do Canal Iônico , Animais , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Humanos , Cadeias de Markov , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA