Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Heart Assoc ; : e030934, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982274

RESUMO

BACKGROUND: Coronary heart disease (CHD) is the leading cause of death in the world. Unfortunately, many of the key diagnostic tools for CHD are insensitive, invasive, and costly; require significant specialized infrastructure investments; and do not provide information to guide postdiagnosis therapy. In prior work using data from the Framingham Heart Study, we provided in silico evidence that integrated genetic-epigenetic tools may provide a new avenue for assessing CHD. METHODS AND RESULTS: In this communication, we use an improved machine learning approach and data from 2 additional cohorts, totaling 449 cases and 2067 controls, to develop a better model for ascertaining symptomatic CHD. Using the DNA from the 2 new cohorts, we translate and validate the in silico findings into an artificial intelligence-guided, clinically implementable method that uses input from 6 methylation-sensitive digital polymerase chain reaction and 10 genotyping assays. Using this method, the overall average area under the curve, sensitivity, and specificity in the 3 test cohorts is 82%, 79%, and 76%, respectively. Analysis of targeted cytosine-phospho-guanine loci shows that they map to key risk pathways involved in atherosclerosis that suggest specific therapeutic approaches. CONCLUSIONS: We conclude that this scalable integrated genetic-epigenetic approach is useful for the diagnosis of symptomatic CHD, performs favorably as compared with many existing methods, and may provide personalized insight to CHD therapy. Furthermore, given the dynamic nature of DNA methylation and the ease of methylation-sensitive digital polymerase chain reaction methodologies, these findings may pave a pathway for precision epigenetic approaches for monitoring CHD treatment response.

2.
Genes (Basel) ; 11(6)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580526

RESUMO

Epigenetic aging (EA) indices are frequently used as predictors of mortality and other important health outcomes. However, each of the commonly used array-based indices has significant heritable components which could tag ethnicity and potentially confound comparisons across racial and ethnic groups. To determine if this was possible, we examined the relationship of DNA methylation in cord blood from 203 newborns (112 African American (AA) and 91 White) at the 513 probes from the Levine PhenoAge Epigenetic Aging index to ethnicity. Then, we examined all sites significantly associated with race in the newborn sample to determine if they were also associated with an index of ethnic genetic heritage in a cohort of 505 AA adults. After Bonferroni correction, methylation at 50 CpG sites was significantly associated with ethnicity in the newborn cohort. The five most significant sites predicted ancestry with a receiver operator characteristic area under the curve of 0.97. Examination of the top 50 sites in the AA adult cohort showed that methylation status at 11 of those sites was also associated with percentage European ancestry. We conclude that the Levine PhenoAge Index is influenced by cryptic ethnic-specific genetic influences. This influence may extend to similarly constructed EA indices and bias cross-race comparisons.


Assuntos
Envelhecimento/genética , Metilação de DNA/genética , Epigênese Genética/genética , Negro ou Afro-Americano/genética , Envelhecimento/sangue , Etnicidade/genética , Feminino , Sangue Fetal/metabolismo , Hispânico ou Latino/genética , Humanos , Recém-Nascido , Masculino , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA