RESUMO
Yellow drum (Nibea albiflora) is an important maricultural fish in China, and genetic improvement is necessary for this species. This research evaluated the application of genomic selection methods to predict the genetic values of seven economic traits for yellow drum. Using genome-wide single-nucleotide polymorphisms (SNPs), we estimated the genetic parameters for seven traits, including body length (BL), swimming bladder index (SBI), swimming bladder weight (SBW), body thickness (BT), body height (BH), body length/body height ratio (LHR), and gonad weight index (GWI). The heritability estimates ranged from 0.309 to 0.843. We evaluated the prediction performance of various statistical methods, and no one method provided the highest predictive ability for all traits. We then evaluated and compared the use of genome-wide association study (GWAS)-informative SNPs and random SNPs for prediction and found that GWAS-informative SNPs obviously increased. It only needed 5 and 100 informative SNPs for LHR and BT to achieve almost the same predictive abilities as using genome-wide SNPs, and for BL, SBI, SBW, BH, and GWI, about 1000 to 3000 informative SNPs were needed to achieve whole-genome level predictive abilities. It can be concluded from the test results that breeders can use fewer SNPs to save the breeding costs of genomic selection for some traits.
Assuntos
Tamanho Corporal/genética , Cruzamento , Perciformes/genética , Animais , Aquicultura/métodos , Feminino , Estudo de Associação Genômica Ampla , Masculino , Perciformes/anatomia & histologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genomic prediction is feasible for estimating genomic breeding values because of dense genome-wide markers and credible statistical methods, such as Genomic Best Linear Unbiased Prediction (GBLUP) and various Bayesian methods. Compared with GBLUP, Bayesian methods propose more flexible assumptions for the distributions of SNP effects. However, most Bayesian methods are performed based on Markov chain Monte Carlo (MCMC) algorithms, leading to computational efficiency challenges. Hence, some fast Bayesian approaches, such as fast BayesB (fBayesB), were proposed to speed up the calculation. This study proposed another fast Bayesian method termed fast BayesC (fBayesC). The prior distribution of fBayesC assumes that a SNP with probability γ has a non-zero effect which comes from a normal density with a common variance. The simulated data from QTLMAS XII workshop and actual data on large yellow croaker were used to compare the predictive results of fBayesB, fBayesC and (MCMC-based) BayesC. The results showed that when γ was set as a small value, such as 0.01 in the simulated data or 0.001 in the actual data, fBayesB and fBayesC yielded lower prediction accuracies (abilities) than BayesC. In the actual data, fBayesC could yield very similar predictive abilities as BayesC when γ ≥ 0.01. When γ = 0.01, fBayesB could also yield similar results as fBayesC and BayesC. However, fBayesB could not yield an explicit result when γ ≥ 0.1, but a similar situation was not observed for fBayesC. Moreover, the computational speed of fBayesC was significantly faster than that of BayesC, making fBayesC a promising method for genomic prediction.