RESUMO
Bushfires produce many toxic pollutants and the smoke has been shown to have negative effects on human health, especially to the respiratory system. Bushfires are predicted to increase in size and frequency, leading to a greater incidence of smoke and impacts. While there are many epidemiological studies of the potential impact on populations, there are few studies using in vitro methods to investigate the biological effects of bushfire emissions to better understand its toxicity and significance. This review focused on the literature pertaining to in vitro toxicity testing to determine the state of knowledge on current methods and findings on the impacts of bushfire smoke. There was a considerable variation in the experimental conditions, outcomes and test concentrations used by researchers using in vitro methods. Of the studies reviewed, most reported adverse impacts of particulate matter (PM) on cytotoxic and genotoxic responses. Studies on whole smoke were rare. Finer primary particulates from bushfire smoke were generally found to be more toxic than the coarse particulates and the toxicological endpoints of bushfire PM different to ambient PM. However the variation in study designs and experimental conditions made comparisons difficult. This review highlights the need for standard protocols to enable appropriate comparisons between studies to be undertaken including the assessment of physiologically relevant outcomes. Further work is essential to establish the effect of burning different vegetation types and combustion conditions on the toxicity of bushfire emissions to better inform both health and response agencies on the significance of smoke from bushfires.
Assuntos
Poluentes Atmosféricos/toxicidade , Incêndios , Fumaça/efeitos adversos , Animais , Humanos , Tamanho da Partícula , Material Particulado , Testes de ToxicidadeRESUMO
The production potential of refuse derived fuel (RDF) in the largest industrial city of Korea is discussed. The purpose of this study is to evaluate the energy potential of the RDF obtained from utilizing combustible solid waste as a fuel resource. The total amount of generated solid waste in the industrial city was more than 3.3 million tonnes, which is equivalent to 3.0tonnes per capita in a single year. The highest amount of solid waste was generated in the city district with the largest population and the biggest petrochemical industrial complex (IC) in Korea. Industrial waste accounted for 89% of the total amount of the solid waste in the city. Potential RDF resources based on combustible solid wastes including wastepaper, wood, rubber, plastic, synthetic resins and industrial sludge were identified. The amount of combustible solid waste that can be used to produce RDF was 635,552tonnes/yr, consisting of three types of RDF: 116,083tonnes/yr of RDF-MS (RDF from municipal solid waste); 146,621tonnes/yr of RDF-IMC (RDF from industrial, municipal and construction wastes); and 372,848tonnes/yr of RDF-IS (RDF from industrial sludge). The total obtainable energy value from the RDF resources in the industrial city was more than 2,240,000x10(6)kcal/yr, with the following proportions: RDF-MS of 25.6%, RDF-IMC of 43.5%, and RDF-IS of 30.9%. If 50% or 100% of the RDF resources are utilized as fuel resources, the industrial city can save approximately 17.6% and 35.2%, respectively, of the current total disposal costs.