Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
3.
Environ Sci Technol ; 56(8): 4702-4710, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353522

RESUMO

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.


Assuntos
Compostos Orgânicos , Poluentes do Solo , Adsorção , Carbono/química , Compostos Orgânicos/química , Solo , Poluentes do Solo/análise , Água/química
4.
Environ Sci Technol ; 53(24): 14479-14488, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31714076

RESUMO

Sediments play an essential role in the functioning of aquatic ecosystems but simultaneously retain harmful compounds. However, sediment quality assessment methods that consider the risks caused by the combined action of all sediment-associated contaminants to benthic biota are still underrepresented in water quality assessment strategies. Significant advancements have been made in the application of effect-based methods, but methodological improvements can still advance sediment risk assessment. The present study aimed to explore such improvements by integrating effect-monitoring and chemical profiling of sediment contamination. To this end, 28 day life cycle bioassays with Chironomus riparius using intact whole sediment cores from contaminated sites were performed in tandem with explorative chemical profiling of bioavailable concentrations of groups of legacy and emerging sediment contaminants to investigate ecotoxicological risks to benthic biota. All contaminated sediments caused effects on the resilient midge C. riparius, stressing that sediment contamination is ubiquitous and potentially harmful to aquatic ecosystems. However, bioassay responses were not in line with any of the calculated toxicity indices, suggesting that toxicity was caused by unmeasured compounds. Hence, this study underlines the relevance of effect-based sediment quality assessment and provides smarter ways to do so.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Ecossistema , Ecotoxicologia , Monitoramento Ambiental , Sedimentos Geológicos , Medição de Risco
5.
Environ Sci Technol ; 53(2): 760-770, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572703

RESUMO

This study determined the sorption affinity to artificial phospholipid membranes ( KMW) for series of perfluorinated carboxylates (PFCAs), perfluorinated sulfonates (PFSAs), alkyl sulfates (C xSO4), and 1-alkanesulfonates (C xSO3). A sorbent dilution assay with solid supported lipid membranes (SSLM) showed consistent CF2 unit increments of 0.59, and CH2 unit increments of 0.53, for the log KMW of perfluorinated and hydrogenated anions, respectively. PFSAs sorbed 0.90 log units stronger than analogue PFCAs; C xSO4 sorbed 0.75 log units stronger than analogue C xSO3 anions. The log KMW values for the octyl analogues increase in the order H(CH2)8SO3- (1.74) < H(CH2)8SO4- (2.58) < F(CF2)8CO2- (PFNA, 4.04) < F(CF2)8SO3- (PFOS, 4.88). Intrinsic partition ratios determined on a phospholipid coated HPLC column (IAM-HPLC) closely aligned with SSLM KMW values. COSMO-RS based molecular calculations of KMW aligned with SSLM KMW values for hydrogenated anions with C8-C14 alkyl chains but strongly underestimated CF2 and CH2 unit increments for C4-C8 based anions. Dividing the critical narcotic membrane burden of 100 mmol/kg by the experimental KMW predicts lethal baseline toxicity concentrations (LC50,narc). The LC50,narc coincides with the lowest reported acute LC50 values for several anionic surfactants but were on average about an order of magnitude lower.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Ânions , Medição de Risco , Sulfatos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA