Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(51): 10637-10648, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170681

RESUMO

We describe methods for physics-based protein design and some recent applications from our work. We present the physical interpretation of a MC simulation in sequence space and show that sequences and conformations form a well-defined statistical ensemble, explored with Monte Carlo and Boltzmann sampling. The folded state energy combines molecular mechanics for solutes with continuum electrostatics for solvent. We usually assume one or a few fixed protein backbone structures and discrete side chain rotamers. Methods based on molecular dynamics, which introduce additional backbone and side chain flexibility, are under development. The redesign of a PDZ domain and an aminoacyl-tRNA synthetase enzyme were successful. We describe a versatile, adaptive, Wang-Landau MC method that can be used to design for substrate affinity, catalytic rate, catalytic efficiency, or the specificity of these properties. The methods are transferable to all biomolecules, can be systematically improved, and give physical insights.


Assuntos
Proteínas/química , Algoritmos , Química Computacional , Interpretação Estatística de Dados , Simulação de Dinâmica Molecular , Método de Monte Carlo , Conformação Proteica , Dobramento de Proteína , Software , Termodinâmica
2.
J Chem Theory Comput ; 12(12): 6035-6048, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27775883

RESUMO

Multistate protein design explores side chain mutations, with the backbone allowed to sample a small, predetermined library of conformations. To achieve Boltzmann sampling of sequences and conformations, we use a hybrid Monte Carlo (MC) scheme: a trial hop between backbone models is followed by a short MC segment where side chain rotamers adjust to the new backbone, before applying a Metropolis-like acceptance test. The theoretical form and a practical approximation for the acceptance test are derived. We then compute backbone conformational free energies for two SH2 and SH3 proteins using different routes and protocols, and verify that for simple test problems, the free energy behaves like a state function, a hallmark of Boltzmann sampling.


Assuntos
Proteínas/química , Domínio Catalítico , Enzimas/química , Enzimas/metabolismo , Simulação de Dinâmica Molecular , Método de Monte Carlo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Termodinâmica , Domínios de Homologia de src
3.
J Comput Chem ; 37(4): 404-15, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26503829

RESUMO

A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl-tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l-tyrosine (l-Tyr), compared to the analogs d-Tyr, p-acetyl-, and p-azido-phenylalanine (ac-Phe, az-Phe). We simulate l- and d-Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous "MD/GBSA" procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l-Tyr, ac- and az-Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l-Tyr or d-Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l-Tyr is the ligand and a d-Tyr specific mutant when d-Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln.


Assuntos
Termodinâmica , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Tirosina/química , Tirosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ligantes , Simulação de Dinâmica Molecular , Método de Monte Carlo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Tirosina-tRNA Ligase/genética
4.
J Comput Chem ; 34(28): 2472-84, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24037756

RESUMO

We describe an automated procedure for protein design, implemented in a flexible software package, called Proteus. System setup and calculation of an energy matrix are done with the XPLOR modeling program and its sophisticated command language, supporting several force fields and solvent models. A second program provides algorithms to search sequence space. It allows a decomposition of the system into groups, which can be combined in different ways in the energy function, for both positive and negative design. The whole procedure can be controlled by editing 2-4 scripts. Two applications consider the tyrosyl-tRNA synthetase enzyme and its successful redesign to bind both O-methyl-tyrosine and D-tyrosine. For the latter, we present Monte Carlo simulations where the D-tyrosine concentration is gradually increased, displacing L-tyrosine from the binding pocket and yielding the binding free energy difference, in good agreement with experiment. Complete redesign of the Crk SH3 domain is presented. The top 10000 sequences are all assigned to the correct fold by the SUPERFAMILY library of Hidden Markov Models. Finally, we report the acid/base behavior of the SNase protein. Sidechain protonation is treated as a form of mutation; it is then straightforward to perform constant-pH Monte Carlo simulations, which yield good agreement with experiment. Overall, the software can be used for a wide range of application, producing not only native-like sequences but also thermodynamic properties with errors that appear comparable to other current software packages.


Assuntos
Biologia Computacional , Proteínas/química , Software , Algoritmos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Método de Monte Carlo , Desdobramento de Proteína , Proteínas Proto-Oncogênicas c-crk/química , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA