Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36595327

RESUMO

Objective.Mapping of dose delivery in proton beam therapy can potentially be performed by analyzing thermoacoustic emissions measured by ultrasound arrays. Here, a method is derived and demonstrated for spatial mapping of thermoacoustic sources using numerical time reversal, simulating re-transmission of measured emissions into the medium.Approach.Spatial distributions of thermoacoustic emission sources are shown to be approximated by the analytic-signal form of the time-reversed acoustic field, evaluated at the time of the initial proton pulse. Given calibration of the array sensitivity and knowledge of tissue properties, this approach approximately reconstructs the acoustic source amplitude, equal to the product of the time derivative of the radiation dose rate, mass density, and Grüneisen parameter. This approach was implemented using two models for acoustic fields of the array elements, one modeling elements as line sources and the other as rectangular radiators. Thermoacoustic source reconstructions employed previously reported measurements of emissions from proton energy deposition in tissue-mimicking phantoms. For a phantom incorporating a bone layer, reconstructions accounted for the higher sound speed in bone. Dependence of reconstruction quality on array aperture size and signal-to-noise ratio was consistent with previous acoustic simulation studies.Main results.Thermoacoustic source distributions were successfully reconstructed from acoustic emissions measured by a linear ultrasound array. Spatial resolution of reconstructions was significantly improved in the azimuthal (array) direction by incorporation of array element diffraction. Source localization agreed well with Monte Carlo simulations of energy deposition, and was improved by incorporating effects of inhomogeneous sound speed.Significance.The presented numerical time reversal approach reconstructs thermoacoustic sources from proton beam radiation, based on straightforward processing of acoustic emissions measured by ultrasound arrays. This approach may be useful for ranging and dosimetry of clinical proton beams, if acoustic emissions of sufficient amplitude and bandwidth can be generated by therapeutic proton sources.


Assuntos
Terapia com Prótons , Prótons , Terapia com Prótons/métodos , Acústica , Som , Radiação Ionizante , Imagens de Fantasmas , Método de Monte Carlo
2.
Nano Lett ; 17(4): 2532-2538, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287747

RESUMO

High-intensity focused ultrasound (HIFU) has gained increasing popularity as a noninvasive therapeutic procedure to treat solid tumors. However, collateral damage due to the use of high acoustic powers during HIFU procedures remains a challenge. The objective of this study is to assess the utility of using gold nanoparticles (gNPs) during HIFU procedures to locally enhance heating at low powers, thereby reducing the likelihood of collateral damage. Phantoms containing tissue-mimicking material (TMM) and physiologically relevant concentrations (0%, 0.0625%, and 0.125%) of gNPs were fabricated. Sonications at acoustic powers of 10, 15, and 20 W were performed for a duration of 16 s using an MR-HIFU system. Temperature rises and lesion volumes were calculated and compared for phantoms with and without gNPs. For an acoustic power of 10 W, the maximum temperature rise increased by 32% and 43% for gNPs concentrations of 0.0625% and 0.125%, respectively, when compared to the 0% gNPs concentration. For the power of 15 W, a lesion volume of 0, 44.5 ± 7, and 63.4 ± 32 mm3 was calculated for the gNPs concentration of 0%, 0.0625%, and 0.125%, respectively. For a power of 20 W, it was found that the lesion volume doubled and tripled for concentrations of 0.0625% and 0.125% gNPs, respectively, when compared to the concentration of 0% gNPs. We conclude that gNPs have the potential to locally enhance the heating and reduce damage to healthy tissue during tumor ablation using HIFU.


Assuntos
Ouro/química , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Hipertermia Induzida , Nanopartículas Metálicas/química , Acústica , Algoritmos , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/terapia , Tamanho da Partícula , Imagens de Fantasmas , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA