Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Appl Clin Med Phys ; 21(1): 127-135, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31854078

RESUMO

PURPOSE: With the increasing use of MR-guided radiation therapy (MRgRT), it becomes important to understand and explore accuracy of medical dosimeters in the presence of magnetic field. The purpose of this work is to characterize metal-oxide-semiconductor field-effect transistors (MOSFETs) in MRgRT systems at 0.345 T magnetic field strength. METHODS: A MOSFET dosimetry system, developed by Best Medical Canada for in-vivo patient dosimetry, was used to study various commissioning tests performed on a MRgRT system, MRIdian® Linac. We characterized the MOSFET dosimeter with different cable lengths by determining its calibration factor, monitor unit linearity, angular dependence, field size dependence, percentage depth dose (PDD) variation, output factor change, and intensity modulated radiation therapy quality assurance (IMRT QA) verification for several plans. MOSFET results were analyzed and compared with commissioning data and Monte Carlo calculations. RESULTS: MOSFET measurements were not found to be affected by the presence of 0.345 T magnetic field. Calibration factors were similar for different cable length dosimeters either placed at the parallel or perpendicular direction to the magnetic field, with variations of less than 2%. The detector showed good linearity (R2  = 0.999) for 100-600 MUs range. Output factor measurements were consistent with ionization chamber data within 2.2%. MOSFET PDD measurements were found to be within 1% for 1-15 cm depth range in comparison to ionization chamber. MOSFET normalized angular response matched thermoluminescent detector (TLD) response within 5.5%. The IMRT QA verification data for the MRgRT linac showed that the percentage difference between ionization chamber and MOSFET was 0.91%, 2.05%, and 2.63%, respectively for liver, spine, and mediastinum. CONCLUSION: MOSFET dosimeters are not affected by the 0.345 T magnetic field in MRgRT system. They showed physics parameters and performance comparable to TLD and ionization chamber; thus, they constitute an alternative to TLD for real-time in-vivo dosimetry in MRgRT procedures.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Dosímetros de Radiação/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Dosagem Radioterapêutica , Semicondutores
2.
J Appl Clin Med Phys ; 20(11): 27-36, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31633882

RESUMO

PURPOSE: To describe and characterize daily machine quality assurance (QA) for an MR-guided radiotherapy (MRgRT) linac system, in addition to reporting a longitudinal assessment of the dosimetric and mechanical stability over a 7-month period of clinical operation. METHODS: Quality assurance procedures were developed to evaluate MR imaging/radiation isocenter, imaging and patient handling system, and linear accelerator stability. A longitudinal assessment was characterized for safety interlocks, laser and imaging isocenter coincidence, imaging and radiation (RT) isocentricity, radiation dose rate and output, couch motion, and MLC positioning. A cylindrical water phantom and an MR-compatible A1SL detector were utilized. MR and RT isocentricity and MLC positional accuracy was quantified through dose measured with a 0.40 cm2  x 0.83 cm2 field at each cardinal angle. The relationship between detector response to MR/RT isocentricity and MLC positioning was established through introducing known errors in phantom position. RESULTS: Correlation was found between detector response and introduced positional error (N = 27) with coefficients of determination of 0.9996 (IEC-X), 0.9967 (IEC-Y), 0.9968 (IEC-Z) in each respective shift direction. The relationship between dose (DoseMR/RT+MLC ) and the vector magnitude of MLC and MR/RT positional error (Errormag ) was calculated to be a nonlinear response and resembled a quadratic function: DoseMR/RT+MLC [%] = -0.0253 Errormag [mm]2  - 0.0195 Errormag [mm]. For the temporal assessment (N = 7 months), safety interlocks were functional. Laser coincidence to MR was within ±2.0 mm (99.6%) and ±1.0 mm (86.8%) over the 7-month assessment. IGRT position-reposition shifts were within ±2.0 mm (99.4%) and ±1.0 mm (92.4%). Output was within ±3% (99.4%). Mean MLC and MR/RT isocenter accuracy was 1.6 mm, averaged across cardinal angles for the 7-month period. CONCLUSIONS: The linac and IGRT accuracy of an MR-guided radiotherapy system has been validated and monitored over seven months for daily QA. Longitudinal assessment demonstrated a drift in dose rate, but temporal assessment of output, MLC position, and isocentricity has been stable.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/radioterapia , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/instrumentação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
3.
Proc SPIE Int Soc Opt Eng ; 94122015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26113765

RESUMO

Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA