Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biol Interact ; 309: 108699, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31202688

RESUMO

The crystal structures of truncated forms of cholinesterases provide good models for assessing the role of non-covalent interactions in dimer assembly in the absence of cross-linking disulfide bonds. These structures identify the four-helix bundle that serves as the interface for formation of acetylcholinesterase and butyrylcholinesterase dimers. Here we performed a theoretical comparison of the structural and energetic factors governing dimerization. This included identification of inter-subunit and intra-subunit hydrogen bonds and hydrophobic interactions, evaluation of solvent-accessible surfaces, and estimation of electrostatic contributions to dimerization. To reveal the contribution to dimerization of individual amino acids within the contact area, free energy perturbation alanine screening was performed. Markov state modelling shows that the loop between the α13 and α14 helices in BChE is unstable, and occupies 4 macro-states. The order of magnitude of mean first passage times between these macrostates is ~10-8 s. Replica exchange molecular dynamics umbrella sampling calculations revealed that the free energy of human BChE dimerization is -15.5 kcal/mol, while that for human AChE is -26.4 kcal/mol. Thus, the C-terminally truncated human butyrylcholinesterase dimer is substantially less stable than that of human acetylcholinesterase. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:CHEMBIOINT:1.


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Butirilcolinesterase/metabolismo , Dimerização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cadeias de Markov , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA