Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6041, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472286

RESUMO

The validity of observational methods in ergonomics is still challenging research. Criterion validity in terms of concurrent validity is the most commonly studied. However, studies comparing observational methods with biomechanical values are rare. Thus, the aim of this study is to compare the Ovako Working Posture Analysing System (OWAS) and the Rapid Entire Body Assessment (REBA) with in vivo load measurements at hip, spine, and knee during stoop and squat lifting of 14 participants. The results reveal that OWAS and REBA action levels (AL) can distinguish between different in vivo load measurements during manual lifting. However, the results also reveal that the same OWAS- and REBA-AL do not necessarily provide equal mean values of in vivo load measurements. For example, resultant contact force in the vertebral body replacement for squat lifting ranged from 57% body weight (%BW) in OWAS-AL1 to 138%BW in OWAS-AL3 compared to 46%BW in REBA-AL0 and 173%BW in REBA-AL3. Furthermore, the results suggest that the performed squat lifting techniques had a higher risk for work-related musculoskeletal disorders than the performed stoop lifting techniques.


Assuntos
Doenças Musculoesqueléticas , Coluna Vertebral , Humanos , Fenômenos Biomecânicos , Joelho , Articulação do Joelho , Medição de Risco
2.
J Biomech ; 65: 32-39, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29037443

RESUMO

Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked - and thereby impact biomechanical interpretation of any new knee replacement design. In this collaborative study, we have created unique kinematic and kinetic datasets of the lower limb musculoskeletal system for worldwide dissemination by assessing a unique cohort of 6 subjects with instrumented knee implants (Charité - Universitätsmedizin Berlin) synchronized with a moving fluoroscope (ETH Zürich) and other measurement techniques (including whole body kinematics, ground reaction forces, video data, and electromyography data) for multiple complete cycles of 5 activities of daily living. Maximal tibio-femoral joint contact forces during walking (mean peak 2.74 BW), sit-to-stand (2.73 BW), stand-to-sit (2.57 BW), squats (2.64 BW), stair descent (3.38 BW), and ramp descent (3.39 BW) were observed. Internal rotation of the tibia ranged from 3° external to 9.3° internal. The greatest range of anterio-posterior translation was measured during stair descent (medial 9.3 ±â€¯1.0 mm, lateral 7.5 ±â€¯1.6 mm), and the lowest during stand-to-sit (medial 4.5 ±â€¯1.1 mm, lateral 3.7 ±â€¯1.4 mm). The complete and comprehensive datasets will soon be made available online for public use in biomechanical and orthopaedic research and development.


Assuntos
Articulação do Joelho/fisiologia , Músculo Esquelético/fisiologia , Atividades Cotidianas , Idoso , Fenômenos Biomecânicos , Eletromiografia , Feminino , Fêmur/fisiologia , Humanos , Cinética , Prótese do Joelho , Extremidade Inferior/fisiologia , Masculino , Pessoa de Meia-Idade , Rotação , Tíbia/fisiologia , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA